scholarly journals Local-in-time existence of strong solutions to a class of the compressible non-Newtonian Navier–Stokes equations

Author(s):  
Martin Kalousek ◽  
Václav Mácha ◽  
Šárka Nečasová
Author(s):  
Dieter Bothe ◽  
Pierre-Etienne Druet

AbstractIn this paper, we extend our study of mass transport in multicomponent isothermal fluids to the incompressible case. For a mixture, incompressibility is defined as the independence of average volume on pressure, and a weighted sum of the partial mass densities stays constant. In this type of models, the velocity field in the Navier–Stokes equations is not solenoidal and, due to different specific volumes of the species, the pressure remains connected to the densities by algebraic formula. By means of a change of variables in the transport problem, we equivalently reformulate the PDE system as to eliminate positivity and incompressibility constraints affecting the density, and prove two type of results: the local-in-time well-posedness in classes of strong solutions, and the global-in-time existence of solutions for initial data sufficiently close to a smooth equilibrium solution.


2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Sourav Mitra

AbstractWe are interested in studying a system coupling the compressible Navier–Stokes equations with an elastic structure located at the boundary of the fluid domain. Initially the fluid domain is rectangular and the beam is located on the upper side of the rectangle. The elastic structure is modeled by an Euler–Bernoulli damped beam equation. We prove the local in time existence of strong solutions for that coupled system.


2010 ◽  
Vol 20 (08) ◽  
pp. 1299-1318 ◽  
Author(s):  
A. BELLOUQUID

This paper deals with the analysis of the asymptotic limit for BGK model to the linearized Navier–Stokes equations when the Knudsen number ε tends to zero. The uniform (in ε) existence of global strong solutions and uniqueness theorems are proved for regular initial fluctuations. As ε tends to zero, the solution of BGK model converges strongly to the solution of the linearized Navier–Stokes systems. The validity of the BGK model is critically analyzed.


Sign in / Sign up

Export Citation Format

Share Document