Characterisation of ship diesel primary particulate matter at the molecular level by means of ultra-high-resolution mass spectrometry coupled to laser desorption ionisation—comparison of feed fuel, filter extracts and direct particle measurements

2015 ◽  
Vol 407 (20) ◽  
pp. 5923-5937 ◽  
Author(s):  
Christopher P. Rüger ◽  
Martin Sklorz ◽  
Theo Schwemer ◽  
Ralf Zimmermann
Fuel ◽  
2021 ◽  
Vol 297 ◽  
pp. 120792
Author(s):  
Dong Guan ◽  
Zhengyu Chen ◽  
Xiu Chen ◽  
Ying Zhang ◽  
Qiuyan Qi ◽  
...  

2009 ◽  
Vol 15 (5) ◽  
pp. 661-672 ◽  
Author(s):  
Lutz F. Tietze ◽  
Birgit Krewer ◽  
Holm Frauendorf

Treating cancer without harming healthy tissue is an important goal in modern medicine. Our research group has developed a series of novel, relatively non-toxic glycosidic prodrugs that are activated to give the corresponding highly cytotoxic drugs selectively in the tumour tissue. Our first investigations have shown a high duplex DNA alkylation efficiency of the drugs, whereas the prodrugs showed almost no tendency for alkylation of duplex DNA. Herein we report on novel investigations of the mode of action of the anti-cancer drugs on a molecular level. Using high-resolution mass spectrometry, we determined the reactivity of these drugs as well as of other drugs of similar structure against different nucleophiles such as RNA and the tripeptide glutathione. In addition, the new drugs were also tested for their interaction with duplex DNA. All compounds show a high reactivity against duplex DNA, whereas the alkylation efficiency regarding RNA and glutathione is only poor. Furthermore, the alkylation of duplex DNA correlates qualitatively but not quantitatively with the cytotoxicity of the drugs. Consequently, other factors besides the alkylation efficiency such as the stability of the drugs seem to influence their biological activity. Altogether the results show that high-resolution mass spectrometry constitutes a powerful method for studying the mode of action of drugs on a molecular level.


2017 ◽  
Author(s):  
Lauren T. Fleming ◽  
Peng Lin ◽  
Alexander Laskin ◽  
Julia Laskin ◽  
Robert Weltman ◽  
...  

Abstract. Emissions of airborne particles from biomass-burning are a significant source of black carbon (BC) and brown carbon (BrC) in rural areas of developing countries where biomass is the predominant energy source for cooking and heating. This study explores the molecular composition of organic particles from household cooking emissions, with a focus on identifying fuel-specific compounds and BrC chromophores. Traditional meals were prepared by a local cook with dung and brushwood-fueled cookstoves in a village of Palwal district, Haryana, India. The cooking events were carried out in a village kitchen while controlling for variables including stove type, fuel moisture content, and meal. The particulate matter (PM2.5) emissions were collected on filters, and then analyzed via nanospray desorption electrospray ionization/high resolution mass spectrometry (nano-DESI-HRMS) and high performance liquid chromatography/photodiode array/high resolution mass spectrometry (HPLC-PDA-HRMS) techniques. The nano-DESI-HRMS analysis provided an inventory of compounds present in the particle phase. Although several compounds observed in this study have been previously characterized using gas chromatography methods, a majority of species in nano-DESI spectra were newly observed biomass-burning compounds. Both the stove (chulha or angithi) and the fuel (brushwood or dung) affected the composition of organic particles. The geometric mean PM2.5 emissions factor and the molecular complexity of PM2.5 emissions increased in the following order: brushwood/chulha (4.9 ± 1.7 g kg-1 dry fuel, 93 compounds), dung/chulha (12.3 ± 2.5 g kg-1 dry fuel, 212 compounds), and dung/angithi (16.7 ± 6.7 g kg-1 dry fuel, 262 compounds). The lower limit for the mass absorption coefficient (MAC) at 365 nm and 405 nm for brushwood PM2.5 was 3.4 m2 g-1 and 1.8 m2 g-1, respectively, which was approximately a factor of two higher than that for dung PM2.5. The HPLC-PDA-HRMS analysis showed that, regardless of fuel type, the main chromophores were CxHyOz lignin fragments. The main chromophores accounting for the higher MAC values of brushwood PM2.5 were C8H10O3 (tentatively assigned syringol), possible nitrophenol species C8H9NO4, and C10H10O3 (tentatively assigned methoxycinnamic acid).


2018 ◽  
Vol 18 (4) ◽  
pp. 2461-2480 ◽  
Author(s):  
Lauren T. Fleming ◽  
Peng Lin ◽  
Alexander Laskin ◽  
Julia Laskin ◽  
Robert Weltman ◽  
...  

Abstract. Emissions of airborne particles from biomass burning are a significant source of black carbon (BC) and brown carbon (BrC) in rural areas of developing countries where biomass is the predominant energy source for cooking and heating. This study explores the molecular composition of organic aerosols from household cooking emissions with a focus on identifying fuel-specific compounds and BrC chromophores. Traditional meals were prepared by a local cook with dung and brushwood-fueled cookstoves in a village in Palwal district, Haryana, India. Cooking was done in a village kitchen while controlling for variables including stove type, fuel moisture, and meal. Fine particulate matter (PM2.5) emissions were collected on filters, and then analyzed via nanospray desorption electrospray ionization–high-resolution mass spectrometry (nano-DESI-HRMS) and high-performance liquid chromatography–photodiode array–high-resolution mass spectrometry (HPLC-PDA-HRMS) techniques. The nano-DESI-HRMS analysis provided an inventory of numerous compounds present in the particle phase. Although several compounds observed in this study have been previously characterized using gas chromatography methods a majority of the species in the nano-DESI spectra were newly observed biomass burning compounds. Both the stove (chulha or angithi) and the fuel (brushwood or dung) affected the composition of organic aerosols. The geometric mean of the PM2.5 emission factor and the observed molecular complexity increased in the following order: brushwood–chulha (7.3 ± 1.8 g kg−1 dry fuel, 93 compounds), dung–chulha (21.1 ± 4.2 g kg−1 dry fuel, 212 compounds), and dung–angithi (29.8 ± 11.5 g kg−1 dry fuel, 262 compounds). The mass-normalized absorption coefficient (MACbulk) for the organic-solvent extractable material for brushwood PM2.5 was 3.7 ± 1.5 and 1.9 ± 0.8 m2 g−1 at 360 and 405 nm, respectively, which was approximately a factor of two higher than that for dung PM2.5. The HPLC-PDA-HRMS analysis showed that, regardless of fuel type, the main chromophores were CxHyOz lignin fragments. The main chromophores accounting for the higher MACbulk values of brushwood PM2.5 were C8H10O3 (tentatively assigned to syringol), nitrophenols C8H9NO4, and C10H10O3 (tentatively assigned to methoxycinnamic acid).


2015 ◽  
Vol 29 (5) ◽  
pp. 2940-2950 ◽  
Author(s):  
Vatsala Sugumaran ◽  
Hillol Biswas ◽  
Anil Yadav ◽  
Jayaraj Christopher ◽  
Vivekanand Kagdiyal ◽  
...  

2020 ◽  
Author(s):  
Denis Leppla ◽  
Leslie Kremper ◽  
Nora Zannoni ◽  
Maria Praß ◽  
Florian Ditas ◽  
...  

<p>The Amazon Rainforest is one of the most important pristine ecosystems for atmospheric chemistry and biodiversity. This region allows the study of organic aerosol particles as well as their nucleation into clouds. However, the rainforest is subject to constant change due to human influences. Thus, it is essential to acquire climate data of trace gases and aerosols over the next decades for a better understanding of the atmospheric oxidant cycle. Therefore, the research site Amazon Tall Tower Observatory (ATTO) was established in the central Amazon Basin to perform long-term measurements under almost natural conditions.</p><p>Biogenic emissions of volatile organic compounds (VOCs) mainly consist of isoprene and terpenes. They are responsible for the production of a large fraction of atmospheric particulate matter. Isoprene represents the largest source of non-methane VOCs in the atmosphere and is primarily emitted from vegetation. Its global emissions were estimated in the magnitude of about 500 ‒ 600 Tg per year. Originally, the isoprene photooxidation was not expected to contribute to the secondary organic aerosol (SOA) budget, due to the high volatility of resulting oxidation products. However, several studies have proven evidence for the importance of isoprene SOA formation. Based on the two double bonds, isoprene is highly reactive towards atmospheric oxidants like OH and NO radicals. The subsequent reactive uptake on acidic particles is strongly dependent on the NO concentration. Therefore, anthropogenic sources have a substantial impact on the isoprene photooxidation.</p><p>The chemical composition of atmospheric aerosols in the rainforest highly depends on the current season, since the Amazon basin exhibits huge variations of gaseous and particulate matter with clean air conditions during the wet season and polluted conditions during the dry season, due to biomass burning events. For a comprehensive statement, it is necessary to perform field measurements under both conditions to study the isoprene and terpene SOA contribution. For that reason, filter samples were collected at ATTO at different heights to analyze the aerosol composition emitted both from local and regional sources.</p><p>High-resolution mass spectrometry combined with data mining techniques will help to link characteristic SOA compounds to certain climate conditions in order to get insights into the Amazon aerosol life cycle.</p>


RSC Advances ◽  
2015 ◽  
Vol 5 (89) ◽  
pp. 73058-73067 ◽  
Author(s):  
Catherine Galindo ◽  
Mirella Del Nero

Using mass spectrometry provided molecular-level insights into the chemical fractionation, and identity of adsorbed compounds, for a terrestrial humic acid rich in condensed aromatics, in alumina-solution systems.


Sign in / Sign up

Export Citation Format

Share Document