organic particles
Recently Published Documents


TOTAL DOCUMENTS

382
(FIVE YEARS 110)

H-INDEX

47
(FIVE YEARS 7)

2022 ◽  
pp. 105945
Author(s):  
B. Rörup ◽  
W. Scholz ◽  
L. Dada ◽  
M. Leiminger ◽  
R. Baalbaki ◽  
...  

2022 ◽  
Vol 3 (1) ◽  
pp. 2
Author(s):  
Jialin Li ◽  
Xinting Yu ◽  
Ella Sciamma-O’Brien ◽  
Chao He ◽  
Joshua A. Sebree ◽  
...  

Abstract In Titan’s nitrogen-methane atmosphere, photochemistry leads to the production of complex organic particles, forming Titan’s thick haze layers. Laboratory-produced aerosol analogs, or “tholins,” are produced in a number of laboratories; however, most previous studies have investigated analogs produced by only one laboratory rather than a systematic, comparative analysis. In this study, we performed a comparative study of an important material property, the surface energy, of seven tholin samples produced in three independent laboratories under a broad range of experimental conditions, and we explored their commonalities and differences. All seven tholin samples are found to have high surface energies and are therefore highly cohesive. Thus, if the surface sediments on Titan are similar to tholins, future missions such as Dragonfly will likely encounter sticky sediments. We also identified a commonality between all the tholin samples: a high dispersive (nonpolar) surface energy component of at least 30 mJ m−2. This common property could be shared by the actual haze particles on Titan as well. Given that the most abundant species interacting with the haze on Titan (methane, ethane, and nitrogen) are nonpolar in nature, the dispersive surface energy component of the haze particles could be a determinant factor in condensate−haze and haze−lake liquid interactions on Titan. With this common trait of tholin samples, we confirmed the findings of a previous study by Yu et al. that haze particles are likely good cloud condensation nuclei for methane and ethane clouds and would likely be completely wetted by the hydrocarbon lakes on Titan.


2021 ◽  
Vol 11 (22) ◽  
pp. 10640
Author(s):  
Hyunjeong Woo ◽  
Kangmin Seo ◽  
Yonghyun Choi ◽  
Jiwon Kim ◽  
Masayoshi Tanaka ◽  
...  

Microplastics are found in various environments with the increasing use of plastics worldwide. Several methods have been developed for the sampling, extraction, purification, identification, and quantification of microplastics in complex environmental matrices. This study intends to summarize recent research trends on the subject. Large microplastic particles can be sorted manually and identified through chemical analysis; however, sample preparation for small microplastic analysis is usually more difficult. Microplastics are identified by evaluating the physical and chemical properties of plastic particles separated through extraction and washing steps from a mixture of inorganic and organic particles. This identification has a high risk of producing false-positive and false-negative results in the analysis of small microplastics. Currently, a combination of physical (e.g., microscopy), chemical (e.g., spectroscopy), and thermal analyses is widely used. We aim to summarize the best strategies for microplastic analysis by comparing the strengths and limitations of each identification method.


2021 ◽  
Author(s):  
Chuanmin Hu

Abstract. Using data collected by the Hyperspectral Imager for the Coastal Ocean (HICO) on the International Space Station between 2010–2014, hyperspectral reflectance of various floating matters in global oceans and lakes are derived for the spectral range of 400–800 nm. Specifically, the entire HICO archive of 9,411 scenes is first visually inspected to identify suspicious image slicks. Then, a nearest-neighboring atmospheric correction is used to derive surface reflectance of slick pixels. Finally, a spectral unmixing scheme is used to derive the reflectance spectra of floating matters. Analysis of the spectral shapes of these various floating matters (macroalgae, microalgae, organic particles, whitecaps) through the use of a Spectral Angle Mapper (SAM) index indicates that they can mostly be distinguished from each other without the need of ancillary information. Such reflectance spectra from the consistent 90-m resolution HICO observations are expected to provide spectral endmembers to differentiate and quantify the various floating matters from existing multi-band satellite sensors and future hyperspectral satellite missions such as NASA’s Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission and Surface Biology and Geology (SBG) mission.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sara Zaferani ◽  
Harald Biester

Understanding marine mercury (Hg) biogeochemistry is crucial, as the consumption of Hg-enriched ocean fish is the most important pathway of Hg uptake in humans. Although ocean sediments are seen as the ultimate Hg sink, marine sediment studies on Hg accumulation are still rare. In this context, studying Hg behavior in the marine environment, especially in upwelling environments, is of particular interest due to its importance in these great upwelling regions for the global fishery. There are contradictory statements about the fate of Hg in upwelling regions. Some studies have suggested high biotic reduction of oxidized Hg and gaseous elemental mercury evasion to the atmosphere. More recent work has suggested that in upwelling regions, where productivity is high, evasion of gaseous elemental mercury is diminished due to scavenging and sedimentation of Hg by organic particles. In this study, we compared Hg concentrations and accumulation rates in the past ∼4,300 and 19,400 years derived from sediment cores collected in the Peruvian upwelling region (Peru Margin) and compared them with those of two other cores collected from the sediment fan of the Amazon and a core from the Congo Basin, which is influenced by both seasonal coastal upwelling and discharge from the river. Median Hg concentrations were higher at the Peru Margin (90.7 μg kg–1) and in the Congo Basin (93.4 μg kg–1) than in the Amazon Fan (35.8 μg kg–1). The average Hg accumulation rates in sediments from the Peru Margin (178 μg m–2 yr–1) were factors of ∼4 and ∼39 times higher than those from the Congo Basin (46.7 μg m–2 yr–1) and Amazon Fan (4.52 μg m–2 yr–1), respectively. Principal component analysis (PCA) of the geochemical data set reveals that Amazon Fan sediments are strongly influenced by the deposition of terrestrial material, which is of less importance in the Congo Basin and of minor importance in Peru Margin sediments. Accordingly, Hg export to sediments in upwelling areas largely surpasses that in fans of large rivers that drain large terrestrial catchments. The high Hg accumulation rates in the sediments from the upwelling area and the minor influence of terrestrial Hg fluxes there suggest that atmospheric-derived Hg in upwelling areas is effectively exported to the sediments through scavenging by organic particles.


2021 ◽  
Vol 8 ◽  
Author(s):  
Aurelien Paulmier ◽  
Gerard Eldin ◽  
José Ochoa ◽  
Boris Dewitte ◽  
Joël Sudre ◽  
...  

The oxygen deficient mesopelagic layer (ODL) off Peru has concentrations below 5 μmol O2 kg–1 and is delimited by a shallow upper oxycline with strong vertical gradient and a more gradual lower oxycline (lOx). Some regions show a narrow band of slightly increased oxygen concentrations within the ODL, an intermediate oxygen layer (iO2). CTD, oxygen and lowered Acoustic Doppler Current Profiler (LADCP, 300 kHz) profiles were taken on the shelf edge and outside down to mostly 2000 m. We evaluate here the acoustic volume backscatter strength of the LADCP signal representing organisms of about 5 mm size. Dominant features of the backscatter profiles were a minimum backscatter strength within the ODL, and just below the lOx a marked backscatter increase reaching a maximum at less than 3.0 μmol O2 kg–1. Below this maximum, the acoustic backscatter strength gradually decreased down to 1000 m below the lOx. The backscatter strength also increased at the iO2 in parallel to the oxygen concentration perturbations marking the iO2. These stable backscatter features were independent of the time of day and the organisms represented by the backscatter had to be adapted to live in this microaerobic environment. During daylight, these stable structures were overlapped by migrating backscatter peaks. Outstanding features of the stable backscatter were that at very low oxygen concentrations, the volume backscatter was linearly related to the oxygen concentration, reaching half peak maximum at less than 2.0 μmol O2 kg–1 below the lOx, and the depth-integrated backscatter of the peak below the lOx was higher than the integral above the Ox. Both features suggest that sufficient organic material produced at the surface reaches to below the ODL to sustain the major fraction of the volume backscatter-producing organisms in the water column. These organisms are adapted to the microaerobic environment so they can position themselves close to the lower oxycline to take advantage of the organic particles sinking out of the ODL.


2021 ◽  
Author(s):  
Uria Alcolombri ◽  
François J. Peaudecerf ◽  
Vicente I. Fernandez ◽  
Lars Behrendt ◽  
Kang Soo Lee ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Felicity Goodyear-Smith ◽  
Robert Schabetsberger

Abstract Background Authorities need to recognize that, while rare, gonorrhea can be transmitted nonsexually, and should not be presumed definitive evidence of abuse. We report the unusual case of a girl diagnosed with Neisseria gonorrhoeae after bathing in a heavily frequented hot pool at the edge of the crater lake Specchio di Venere (“Mirror of Venus”) on Pantelleria Island, Italy. Case presentation Two days after bathing in the pool, this 11-year-old Austrian girl developed vulvovaginitis that partially settled with antifungal cream. Subsequent swabs cultured positive for Neisseria gonorrhoeae. Family members tested negative. The child adamantly denied any sexual contact, and no opportunities for sexual exposure could be identified. It was therefore concluded that she must have acquired the infection from pool water contaminated by gonococcus after a 2-day incubation period. The infection was successfully treated with ceftriaxone and azithromycin with no adverse effects. Conclusions The pools are shallow, close to body temperature, isotonic, slightly acidic from CO2 bubbles, and contain organic particles, all potentially supporting survival of gonococcus. There are historical case reports in the literature of gonococcal epidemics in children’s hospitals being traced to common baths. It is imperative that all cases of gonococcal infection in children are fully investigated, including examining all other relevant family members, to determine whether sexual assault has occurred. This is not a diagnosis to be missed. However, both sexual and nonsexual transmission are possible. A presumption that a gonococcal infection is diagnostic of sexual abuse can be dire, with children wrongfully removed from their parents’ care, and their caregivers facing false charges of sexual crimes. Our case serves to illustrate that the very uncommon diagnosis of gonorrhea in a child may be the result of nonsexual transmission of the infection, and that contaminated hot pools are a very rare source of infection that should be considered.


Sign in / Sign up

Export Citation Format

Share Document