Semi-phenomenological neutron density distributions

1997 ◽  
Vol 357 (4) ◽  
pp. 429-432 ◽  
Author(s):  
G. A. Lalazissis ◽  
C. P. Panos ◽  
M. E. Grypeos ◽  
Y. K. Gambhir
2008 ◽  
Vol 17 (09) ◽  
pp. 1765-1773 ◽  
Author(s):  
JIGUANG CAO ◽  
ZHONGYU MA ◽  
NGUYEN VAN GIAI

The microscopic properties and superfluidity of the inner crust in neutron stars are investigated in the framework of the relativistic mean field(RMF) model and BCS theory. The Wigner-Seitz(W-S) cell of inner crust is composed of neutron-rich nuclei immersed in a sea of dilute, homogeneous neutron gas. The pairing properties of nucleons in the W-S cells are treated in BCS theory with Gogny interaction. In this work, we emphasize on the choice of the boundary conditions in the RMF approach and superfluidity of the inner crust. Three kinds of boundary conditions are suggested. The properties of the W-S cells with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov(HFB) models are compared.


2013 ◽  
Vol 22 (11) ◽  
pp. 1350082 ◽  
Author(s):  
Z. A. KHAN ◽  
DEEKSHA CHAUHAN ◽  
MINITA SINGH

Using the Coulomb modified Glauber model, we analyze the elastic scattering of protons from He and Li isotopes at 60 MeV and 72 MeV. The calculations require two inputs; the nucleon–nucleon (NN) amplitude and the nucleon density distributions in target nuclei. The central part of the NN amplitude is taken from the available NN scattering observables. To find the spin-dependent part, we employ p-4 He scattering data to fix its parameter values. For target nuclei, we use nucleon density distributions available in the literature. The NN amplitude, as obtained in this work, is then used to study the sensitivity of the calculated differential cross-section and polarization for p-6, 8 He scattering on the density distributions used. It is found that both the differential cross-section and polarization could provide a test to know which is the better choice of nucleon (especially neutron) density distributions. We also present the differential cross-sections for p-6, 9, 11 Li scattering at 60 MeV and 72 MeV in order to assess the suitability of the obtained NN amplitude. It is found that the results are in reasonable agreement with the experiment up to only moderate scattering angles, leaving significant discrepancy at large scattering angles. Our calculations suggest the need of medium modifications in the NN amplitude, arising due to Pauli blocking.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050046
Author(s):  
M. Rashdan ◽  
T. A. Abdel-Karim

The fusion excitation function for the systems [Formula: see text]S+[Formula: see text]Zr is investigated using a microscopic internuclear potential derived from Skyrme energy density functional. The inputs in this approach are the proton and neutron density distributions of the interacting nuclei, which are derived from Skyrme–Hartree–Fock calculations. The SkM[Formula: see text] interaction is used in the calculation of the nuclear densities as well as the internuclear potential. The coupling to low lying inelastic excited states of target and projectile is considered. The role of the neutron transfer is discussed, where it is considered through the CCFULL model calculation. A good agreement with the experimental data is obtained without adjustable parameters.


2010 ◽  
Vol 82 (4) ◽  
Author(s):  
J. Zenihiro ◽  
H. Sakaguchi ◽  
T. Murakami ◽  
M. Yosoi ◽  
Y. Yasuda ◽  
...  

2010 ◽  
Vol 25 (24) ◽  
pp. 2071-2076
Author(s):  
S. HADDAD

Based on a relativistic Thomas–Fermi model, it is shown that a two-parameter Fermi distribution can be used for describing the neutron density distribution in the 208 Pb nucleus.


Sign in / Sign up

Export Citation Format

Share Document