proton elastic scattering
Recently Published Documents


TOTAL DOCUMENTS

520
(FIVE YEARS 24)

H-INDEX

50
(FIVE YEARS 3)

2022 ◽  
Vol 63 (1) ◽  
Author(s):  
Ch. Elster ◽  
M. Burrows ◽  
R. B. Baker ◽  
S. P. Weppner ◽  
K. D. Launey ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. R. Hadizadeh ◽  
M. Radin ◽  
F. Nazari

AbstractThe matrix elements of relativistic nucleon–nucleon (NN) potentials are calculated directly from the nonrelativistic potentials as a function of relative NN momentum vectors, without a partial wave decomposition. To this aim, the quadratic operator relation between the relativistic and nonrelativistic NN potentials is formulated in momentum-helicity basis states. It leads to a single integral equation for the two-nucleon (2N) spin-singlet state, and four coupled integral equations for two-nucleon spin-triplet states, which are solved by an iterative method. Our numerical analysis indicates that the relativistic NN potential obtained using CD-Bonn potential reproduces the deuteron binding energy and neutron-proton elastic scattering differential and total cross-sections with high accuracy.


2021 ◽  
Vol 67 (3 May-Jun) ◽  
Author(s):  
Sarwat Zahra ◽  
Bushra Shafaq

Using  proton–proton elastic scattering data  at  TeV and squared four-momentum transfer 0.36 < -t <  0.76 (GeV/c)2 for 13 σBeam distance  and  0.07 < -t <  0.46 (GeV/c)2 for 4.3 σBeam distance, form factor of proton is predicted. Simplest version of Chou–Yang model is employed to extract the form factor by fitting experimental data of differential cross section from TOTEM experiment (for 13σBeamand 4.3 σBeam distance) to a single Gaussian. Root mean square (rms) charge radius of proton is calculated using this form factor.  It is found to be equal to 0.91 fm and 0.90 fm respectively. Which is in good agreement with experimental data and theoretically predicted values.


2021 ◽  
Vol 67 (3 May-Jun) ◽  
pp. 491
Author(s):  
S. Zahra ◽  
B. Shafaq

Using  proton–proton elastic scattering data  at  TeV and squared four-momentum transfer 0.36 < -t <  0.76 (GeV/c)2 for 13 σBeam distance  and  0.07 < -t <  0.46 (GeV/c)2 for 4.3 σBeam distance, form factor of proton is predicted. Simplest version of Chou–Yang model is employed to extract the form factor by fitting experimental data of differential cross section from TOTEM experiment (for 13σBeamand 4.3 σBeam distance) to a single Gaussian. Root mean square (rms) charge radius of proton is calculated using this form factor.  It is found to be equal to 0.91 fm and 0.90 fm respectively. Which is in good agreement with experimental data and theoretically predicted values.


2021 ◽  
Vol 812 ◽  
pp. 136022
Author(s):  
H. Xu ◽  
Y. Zhou ◽  
U. Bechstedt ◽  
J. Böker ◽  
A. Gillitzer ◽  
...  

2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Huan Nhut Phan

Nuclear reactions of proton by light nuclei at low energies play a key role in the study ofnucleosynthesis which is of interest in nuclear astrophysics. The most fundamental process whichis very necessary is the elastic scattering. In this work, we construct a microscopic proton-nucleuspotential in order to describe the differential cross-sections over scattering angles of the protonelastic scattering by 12C and 13C in the range of available energies 14 - 22 MeV. The microscopicoptical potential is based on the folding model using the effective nucleon-nucleon interactionCDM3Yn. The results show the promising use of the CDM3Yn interactions at low and very lowenergies, which were originally used for nuclear reactions at intermediate energies. This could bethe premise for the study of nuclear reactions using CDM3Yn interaction in astrophysics at lowenergies.


Sign in / Sign up

Export Citation Format

Share Document