scholarly journals Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions

2019 ◽  
Vol 372 (1) ◽  
pp. 1-69 ◽  
Author(s):  
Maximilian Jeblick ◽  
Nikolai Leopold ◽  
Peter Pickl

Abstract We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting from an interacting N-particle system of bosons. We consider the interaction potential to be given either by $$W_\beta (x)=N^{-1+2 \beta }W(N^\beta x)$$Wβ(x)=N-1+2βW(Nβx), for any $$\beta >0$$β>0, or to be given by $$V_N(x)=e^{2N} V(e^N x)$$VN(x)=e2NV(eNx), for some spherical symmetric, nonnegative and compactly supported $$W,V \in L^\infty ({\mathbb {R}}^2,{\mathbb {R}})$$W,V∈L∞(R2,R). In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential $$V_N$$VN we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.

Author(s):  
Rupert L. Frank ◽  
David Gontier ◽  
Mathieu Lewin

AbstractIn this paper we disprove part of a conjecture of Lieb and Thirring concerning the best constant in their eponymous inequality. We prove that the best Lieb–Thirring constant when the eigenvalues of a Schrödinger operator $$-\Delta +V(x)$$ - Δ + V ( x ) are raised to the power $$\kappa $$ κ is never given by the one-bound state case when $$\kappa >\max (0,2-d/2)$$ κ > max ( 0 , 2 - d / 2 ) in space dimension $$d\ge 1$$ d ≥ 1 . When in addition $$\kappa \ge 1$$ κ ≥ 1 we prove that this best constant is never attained for a potential having finitely many eigenvalues. The method to obtain the first result is to carefully compute the exponentially small interaction between two Gagliardo–Nirenberg optimisers placed far away. For the second result, we study the dual version of the Lieb–Thirring inequality, in the same spirit as in Part I of this work Gontier et al. (The nonlinear Schrödinger equation for orthonormal functions I. Existence of ground states. Arch. Rat. Mech. Anal, 2021. https://doi.org/10.1007/s00205-021-01634-7). In a different but related direction, we also show that the cubic nonlinear Schrödinger equation admits no orthonormal ground state in 1D, for more than one function.


Sign in / Sign up

Export Citation Format

Share Document