scholarly journals Airy Structures for Semisimple Lie Algebras

Author(s):  
Leszek Hadasz ◽  
Błażej Ruba

AbstractWe give a complete classification of Airy structures for finite-dimensional simple Lie algebras over $${\mathbb {C}}$$ C , and to some extent also over $${\mathbb {R}}$$ R , up to isomorphisms and gauge transformations. The result is that the only algebras of this type which admit any Airy structures are $$\mathfrak {sl}_2$$ sl 2 , $$\mathfrak {sp}_4$$ sp 4 and $$\mathfrak {sp}_{10}$$ sp 10 . Among these, each admits exactly two non-equivalent Airy structures. Our methods apply directly also to semisimple Lie algebras. In this case it turns out that the number of non-equivalent Airy structures is countably infinite. We have derived a number of interesting properties of these Airy structures and constructed many examples. Techniques used to derive our results may be described, broadly speaking, as an application of representation theory in semiclassical analysis.

1975 ◽  
Vol 27 (5) ◽  
pp. 1011-1021 ◽  
Author(s):  
Gordon Brown

Cartan subalgebras play a very important role in the classification of the finite-dimensional simple Lie algebras over an algebraically closed field of characteristic zero. It is well-known [5, 273] that any two Cartan subalgebras of such an algebra are conjugate, i.e. images of one another under some automorphism of the algebra. On the other hand, there exist finitedimensional simple Lie algebras over fields of finite characteristic p possessing non-conjugate Cartan subalgebras [2; 3; 4]. The simple Lie algebras discovered by Zassenhaus [6] also possess non-conjugate Cartan subalgebras, and we shall give a complete classification of Cartan subalgebras of these algebras in this paper.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950002 ◽  
Author(s):  
Xiangqian Guo ◽  
Genqiang Liu

In this paper, we studied the jet modules for the centerless Virasoro-like algebra which is the Lie algebra of the Lie group of the area-preserving diffeomorphisms of a [Formula: see text]-torus. The jet modules are certain natural modules over the Lie algebra of semi-direct product of the centerless Virasoro-like algebra and the Laurent polynomial algebra in two variables. We reduce the irreducible jet modules to the finite-dimensional irreducible modules over some infinite-dimensional Lie algebra and then characterize the irreducible jet modules with irreducible finite dimensional modules over [Formula: see text]. To determine the indecomposable jet modules, we use the technique of polynomial modules in the sense of [Irreducible representations for toroidal Lie algebras, J. Algebras 221 (1999) 188–231; Weight modules over exp-polynomial Lie algebras, J. Pure Appl. Algebra 191 (2004) 23–42]. Consequently, indecomposable jet modules are described using modules over the algebra [Formula: see text], which is the “positive part” of a Block type algebra studied first by [Some infinite-dimensional simple Lie algebras in characteristic [Formula: see text] related to those of Block, J. Pure Appl. Algebra 127(2) (1998) 153–165] and recently by [A [Formula: see text]-graded generalization of the Witt-algebra, preprint; Classification of simple Lie algebras on a lattice, Proc. London Math. Soc. 106(3) (2013) 508–564]).


2017 ◽  
Vol 28 (01) ◽  
pp. 1750002 ◽  
Author(s):  
Henan Wu

In this paper, we study the finite representation theory of the map Lie conformal algebra [Formula: see text], where G is a finite simple Lie conformal algebra and A is a commutative associative algebra with unity over [Formula: see text]. In particular, we give a complete classification of nontrivial finite irreducible conformal modules of [Formula: see text] provided A is finite-dimensional.


2017 ◽  
Vol 190 (1) ◽  
pp. 23-51 ◽  
Author(s):  
Kenro Furutani ◽  
Irina Markina

2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Michel Goze ◽  
Elisabeth Remm

AbstractThe classification of complex or real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example, the nilpotent Lie algebras are classified only up to dimension 7. Moreover, to recognize a given Lie algebra in the classification list is not so easy. In this work, we propose a different approach to this problem. We determine families for some fixed invariants and the classification follows by a deformation process or a contraction process. We focus on the case of 2- and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology for this type of algebras and the algebras which are rigid with respect to this cohomology. Other


Sign in / Sign up

Export Citation Format

Share Document