Finite irreducible representations of map Lie conformal algebras

2017 ◽  
Vol 28 (01) ◽  
pp. 1750002 ◽  
Author(s):  
Henan Wu

In this paper, we study the finite representation theory of the map Lie conformal algebra [Formula: see text], where G is a finite simple Lie conformal algebra and A is a commutative associative algebra with unity over [Formula: see text]. In particular, we give a complete classification of nontrivial finite irreducible conformal modules of [Formula: see text] provided A is finite-dimensional.

2019 ◽  
Vol 30 (06) ◽  
pp. 1950026 ◽  
Author(s):  
Lipeng Luo ◽  
Yanyong Hong ◽  
Zhixiang Wu

Lie conformal algebras [Formula: see text] are the semi-direct sums of Virasoro Lie conformal algebra and its nontrivial conformal modules of rank one. In this paper, we first give a complete classification of all finite nontrivial irreducible conformal modules of [Formula: see text]. It is shown that all such modules are of rank one. Moreover, with a similar method, all finite nontrivial irreducible conformal modules of Schrödinger–Virasoro type Lie conformal algebras [Formula: see text] and [Formula: see text] are characterized.


2005 ◽  
Vol 2005 (2) ◽  
pp. 225-262 ◽  
Author(s):  
N. Z. Iorgov ◽  
A. U. Klimyk

The aim of this paper is to give a complete classification of irreducible finite-dimensional representations of the nonstandardq-deformationU′q(son)(which does not coincide with the Drinfel'd-Jimbo quantum algebraUq(son)) of the universal enveloping algebraU(son(ℂ))of the Lie algebrason(ℂ)whenqis not a root of unity. These representations are exhausted by irreducible representations of the classical type and of the nonclassical type. The theorem on complete reducibility of finite-dimensional representations ofU′q(son)is proved.


Author(s):  
Leszek Hadasz ◽  
Błażej Ruba

AbstractWe give a complete classification of Airy structures for finite-dimensional simple Lie algebras over $${\mathbb {C}}$$ C , and to some extent also over $${\mathbb {R}}$$ R , up to isomorphisms and gauge transformations. The result is that the only algebras of this type which admit any Airy structures are $$\mathfrak {sl}_2$$ sl 2 , $$\mathfrak {sp}_4$$ sp 4 and $$\mathfrak {sp}_{10}$$ sp 10 . Among these, each admits exactly two non-equivalent Airy structures. Our methods apply directly also to semisimple Lie algebras. In this case it turns out that the number of non-equivalent Airy structures is countably infinite. We have derived a number of interesting properties of these Airy structures and constructed many examples. Techniques used to derive our results may be described, broadly speaking, as an application of representation theory in semiclassical analysis.


2019 ◽  
Vol 31 (5) ◽  
pp. 1283-1304 ◽  
Author(s):  
Miodrag Cristian Iovanov ◽  
Alexander Harris Sistko

AbstractWe study maximal associative subalgebras of an arbitrary finite-dimensional associative algebra B over a field {\mathbb{K}} and obtain full classification/description results of such algebras. This is done by first obtaining a complete classification in the semisimple case and then lifting to non-semisimple algebras. The results are sharpest in the case of algebraically closed fields and take special forms for algebras presented by quivers with relations. We also relate representation theoretic properties of the algebra and its maximal and other subalgebras and provide a series of embeddings between quivers, incidence algebras and other structures which relate indecomposable representations of algebras and some subalgebras via induction/restriction functors. Some results in literature are also re-derived as a particular case, and other applications are given.


2018 ◽  
Vol 2019 (15) ◽  
pp. 4822-4844 ◽  
Author(s):  
Natalia Iyudu ◽  
Agata Smoktunowicz

Abstract Potential algebras feature in the minimal model program and noncommutative resolution of singularities, and the important cases are when they are finite dimensional, or of linear growth. We develop techniques, involving Gröbner basis theory and generalized Golod–Shafarevich-type theorems for potential algebras, to determine finiteness conditions in terms of the potential. We consider two-generated potential algebras. Using Gröbner bases techniques and arguing in terms of associated truncated algebra we prove that they cannot have dimension smaller than 8. This answers a question of Wemyss [21], related to the geometric argument of Toda [17]. We derive from the improved version of the Golod–Shafarevich theorem, that if the potential has only terms of degree 5 or higher, then the potential algebra is infinite dimensional. We prove that potential algebra for any homogeneous potential of degree $n\geqslant 3$ is infinite dimensional. The proof includes a complete classification of all potentials of degree 3. Then we introduce a certain version of Koszul complex, and prove that in the class $\mathcal {P}_{n}$ of potential algebras with homogeneous potential of degree $n+1\geqslant 4$, the minimal Hilbert series is $H_{n}=\frac {1}{1-2t+2t^{n}-t^{n+1}}$, so they are all infinite dimensional. Moreover, growth could be polynomial (but nonlinear) for the potential of degree 4, and is always exponential for potential of degree starting from 5. For one particular type of potential we prove a conjecture by Wemyss, which relates the difference of dimensions of potential algebra and its abelianization with Gopakumar–Vafa invariants.


Author(s):  
Yuly Billig ◽  
Vyacheslav Futorny

AbstractWe solve a long standing problem of the classification of all simple modules with finite-dimensional weight spaces over Lie algebra of vector fields on


2008 ◽  
Vol 78 (2) ◽  
pp. 261-284 ◽  
Author(s):  
XIN TANG ◽  
YUNGE XU

AbstractWe construct families of irreducible representations for a class of quantum groups Uq(fm(K,H). First, we realize these quantum groups as hyperbolic algebras. Such a realization yields natural families of irreducible weight representations for Uq(fm(K,H)). Second, we study the relationship between Uq(fm(K,H)) and Uq(fm(K)). As a result, any finite-dimensional weight representation of Uq(fm(K,H)) is proved to be completely reducible. Finally, we study the Whittaker model for the center of Uq(fm(K,H)), and a classification of all irreducible Whittaker representations of Uq(fm(K,H)) is obtained.


Sign in / Sign up

Export Citation Format

Share Document