Discharge rate during low-force isometric contractions influences motor unit coherence below 15 Hz but not motor unit synchronization

2006 ◽  
Vol 178 (3) ◽  
pp. 285-295 ◽  
Author(s):  
Evangelos A. Christou ◽  
Thorsten Rudroff ◽  
Joel A. Enoka ◽  
François Meyer ◽  
Roger M. Enoka
2005 ◽  
Vol 94 (5) ◽  
pp. 3126-3133 ◽  
Author(s):  
Benjamin Pasquet ◽  
Alain Carpentier ◽  
Jacques Duchateau

This study examines the effect of fascicle length change on motor-unit recruitment and discharge rate in the human tibialis anterior (TA) during isometric contractions of various intensities. The torque produced during dorsiflexion and the surface and intramuscular electromyograms (EMGs) from the TA were recorded in eight subjects. The behavior of the same motor unit ( n = 59) was compared at two ankle joint angles (+10 and −10° around the ankle neutral position). Muscle fascicle length of the TA was measured noninvasively using ultrasonography recordings. When the ankle angle was moved from 10° plantarflexion to 10° dorsiflexion, the torque produced during maximal voluntary contraction (MVC) was significantly reduced [35.2 ± 3.3 vs. 44.3 ± 4.2 (SD) Nm; P < 0.001] and the average surface EMG increased (0.47 ± 0.08 vs. 0.43 ± 0.06 mV; P < 0.05). At reduced ankle joint angle, muscle fascicle length declined by 12.7% ( P < 0.01) at rest and by 18.9% ( P < 0.001) during MVC. Motor units were activated at a lower recruitment threshold for short compared with long muscle fascicle length, either when expressed in absolute values (2.1 ± 2.5 vs. 3.6 ± 3.7 Nm; P < 0.001) or relative to their respective MVC (5.2 ± 6.1 vs. 8.8 ± 9.0%). Higher discharge rate and additional motor-unit recruitment were observed at a given absolute or relative torque when muscle fascicles were shortened. However, the data indicate that increased rate coding was mainly present at low torque level (<10% MVC), when the muscle-tendon complex was compliant, whereas recruitment of additional motor units played a dominant role at higher torque level and decreased compliance (10–35% MVC). Taken together, the results suggest that the central command is modulated by the afferent proprioceptive information during submaximal contractions performed at different muscle fascicle lengths.


2012 ◽  
Vol 107 (11) ◽  
pp. 3078-3085 ◽  
Author(s):  
Jochen Schomacher ◽  
Jakob Lund Dideriksen ◽  
Dario Farina ◽  
Deborah Falla

This study investigated the behavior of motor units in the semispinalis cervicis muscle. Intramuscular EMG recordings were obtained unilaterally at levels C2 and C5 in 15 healthy volunteers (8 men, 7 women) who performed isometric neck extensions at 5%, 10%, and 20% of the maximal force [maximum voluntary contraction (MVC)] for 2 min each and linearly increasing force contractions from 0 to 30% MVC over 3 s. Individual motor unit action potentials were identified. The discharge rate and interspike interval variability of the motor units in the two locations did not differ. However, the recruitment threshold of motor units detected at C2 ( n = 16, mean ± SD: 10.3 ± 6.0% MVC) was greater than that of motor units detected at C5 ( n = 92, 6.9 ± 4.3% MVC) ( P < 0.01). A significant level of short-term synchronization was identified in 246 of 307 motor unit pairs when computed within one spinal level but only in 28 of 110 pairs of motor units between the two levels. The common input strength, which quantifies motor unit synchronization, was greater for pairs within one level (0.47 ± 0.32) compared with pairs between levels (0.09 ± 0.07) ( P < 0.05). In a second experiment on eight healthy subjects, interference EMG was recorded from the same locations during a linearly increasing force contraction from 0 to 40% MVC and showed significantly greater EMG amplitude at C5 than at C2. In conclusion, synaptic input is distributed partly independently and nonuniformly to different fascicles of the semispinalis cervicis muscle.


2005 ◽  
Vol 30 (3) ◽  
pp. 341-351 ◽  
Author(s):  
Gary Kamen

Researchers have alluded to the existence of "neural factors" in the expression and development of muscular strength. Candidate neural factors including motor unit recruitment, rate coding, doublet firing, and motor unit synchronization are discussed in this review. Aging is generally accompanied by lower motor unit discharge rates. However, both young and older adults exhibit rapid changes in muscular strength with repeated strength testing. These strength changes occur with concomitant albeit transient increases in motor unit discharge rate. These and other neural factors may contribute to the initial increases in muscular strength observed during the early phases of resistance exercise training. Key words: firing rate, muscle, exercise


2019 ◽  
Vol 127 (1) ◽  
pp. 205-214 ◽  
Author(s):  
Alessandro Del Vecchio ◽  
Deborah Falla ◽  
Francesco Felici ◽  
Dario Farina

Correlation between motor unit discharge times, often referred to as motor unit synchronization, is determined by common synaptic input to motor neurons. Although it has been largely speculated that synchronization should influence the rate of force development, the association between the degree of motor unit synchronization and rapid force generation has not been determined. In this study, we examined this association with both simulations and experimental motor unit recordings. The analysis of experimental motor unit discharges from the tibialis anterior muscle of 20 healthy individuals during rapid isometric contractions revealed that the average motor unit discharge rate was associated with the rate of force development. Moreover, the extent of motor unit synchronization was entirely determined by the average motor unit discharge rate ( R > 0.7, P < 0.0001). The simulation model demonstrated that the relative proportion of common synaptic input received by motor neurons, which determines motor unit synchronization, does not influence the rate of force development ( R = 0.03, P > 0.05). Nonetheless, the estimates of correlation between motor unit spike trains were significantly correlated with the rate of force generation ( R > 0.8, P < 0.0001). These results indicate that the average motor unit discharge rate, but not the degree of motor unit synchronization, contributes to most of the variance of human contractile speed among individuals. In addition, estimates of correlation between motor unit discharge times depend strongly on the number of identified motor units and therefore are not indicative of the strength of common input. NEW & NOTEWORTHY It is commonly assumed that motor unit synchronization has an impact on the rate of force development of a muscle. Here we present computer simulations and experimental data of human tibialis anterior motor units during rapid contractions that show that motor unit synchronization is not a determinant of the rate of force production. This conclusion clarifies the neural determinants of rapid force generation.


2000 ◽  
Vol 83 (1) ◽  
pp. 441-452 ◽  
Author(s):  
Wanxiang Yao ◽  
Rew J. Fuglevand ◽  
Roger M. Enoka

The purpose of the study was to determine the effect of motor-unit synchronization on the surface electromyogram (EMG) and isometric force using a computer model of muscle contraction. The EMG and force were simulated by generating muscle fiber action potentials, defining motor-unit mechanical characteristics and territories, estimating motor-unit action potentials, specifying motor-unit discharge times, and imposing various levels of motor-unit synchronization. The output (EMG and force) was simulated at 11 levels of excitation, ranging from 5 to 100% of maximum. To synchronize motor-unit activity, selected motor-unit discharge times were adjusted; however, the number of motor units recruited and the average discharge rate of each unit was constant across synchronization conditions for a given level of excitation. Two levels of synchronization were imposed on the discharge times: a moderate and a high level, which approximated the experimentally observed range of motor-unit synchronization. The moderate level of synchrony caused the average EMG to increase by ∼65%, whereas the high level caused a 130% increase in the EMG with respect to the no-synchrony condition. Neither synchrony condition influenced the magnitude of the average force. However, motor-unit synchronization did increase the amplitude of the fluctuations in the simulated force, especially at intermediate levels of excitation. In conclusion, motor-unit synchronization increased the amplitude of the average rectified EMG and decreased the steadiness of the force exerted by the muscle in simulated contractions.


2011 ◽  
Vol 105 (3) ◽  
pp. 1225-1235 ◽  
Author(s):  
Tamara J. Dartnall ◽  
Michael A. Nordstrom ◽  
John G. Semmler

The purpose of this study was to examine changes in motor unit activity in the biceps brachii muscle after an initial ( Bout 1) and repeated ( Bout 2) session of eccentric exercise separated by 1 wk. Eight subjects (aged 22 ± 2 yr) participated in experimental assessments of neuromuscular function obtained before, immediately after, 24 h after, and 7 days after each exercise bout. Each experimental session involved assessments of elbow-flexor force and biceps and triceps brachii electromyography during maximum voluntary isometric contractions (MVCs) and constant-force isometric contractions at five contraction intensities (5–50% MVC), along with indicators of muscle damage (muscle pain and passive tension). In addition, motor unit recordings were obtained before exercise, 7 days after Bout 1, and 24 h after Bout 2 to assess motor unit synchronization and recruitment thresholds. Following a single eccentric exercise session that elicited significant indicators of muscle damage, we found a 57% increase in motor unit synchronization 7 days later compared with before exercise, despite the recovery of maximal strength, soreness, and relaxed elbow-joint angle at this time. Furthermore, a second bout of the same eccentric exercise resulted in reduced indicators of muscle damage and a decline in the strength of motor unit synchronization (24 h after Bout 2) toward levels observed before both exercise sessions. In contrast, no changes in motor unit recruitment thresholds were observed 7 days after Bout 1 or 24 h after Bout 2 compared with before exercise. The increased motor unit synchronization 7 days after a single eccentric exercise session provides new evidence of changes in motor unit activity during the putative repair and regeneration phase following eccentric muscle damage.


Author(s):  
Tea Lulic-Kuryllo ◽  
Christopher K. Thompson ◽  
ning.jiang Jiang ◽  
Francesco Negro ◽  
Clark Dickerson

The pectoralis major critically enables arm movement in several directions. However, its neural control remains unknown. High-density electromyography (HD-sEMG) was acquired from the pectoralis major in two sets of experiments in healthy young adults. Participants performed ramp-and-hold isometric contractions in: adduction, internal rotation, flexion, and horizontal adduction at three force levels: 15%, 25%, and 50% scaled to task-specific maximal voluntary force (MVF). HD-sEMG signals were decomposed into motor unit spike trains using a convolutive blind source separation algorithm and matched across force levels using a motor unit matching algorithm. The mean discharge rate and coefficient of variation were quantified across the hold and compared between 15% and 25% MVF across all tasks, while comparisons between 25 and 50% MVF were made where available. Mean motor unit discharge rate was not significantly different between 15% and 25% MVF (all p > 0.05) across all tasks or between 25% and 50% MVF in horizontal adduction (p = 0.11), indicating an apparent saturation across force levels and the absence of rate coding. These findings suggest that the pectoralis major likely relies on motor unit recruitment to increase force, providing first-line evidence of motor unit recruitment in this muscle and paving the way for more deliberate investigations of the pectoralis major involvement in shoulder function.


2005 ◽  
Vol 94 (4) ◽  
pp. 2878-2887 ◽  
Author(s):  
Carol J. Mottram ◽  
Evangelos A. Christou ◽  
François G. Meyer ◽  
Roger M. Enoka

The rate of change in the fluctuations in motor output differs during the performance of fatiguing contractions that involve different types of loads. The purpose of this study was to examine the contribution of frequency modulation of motor unit discharge to the fluctuations in the motor output during sustained contractions with the force and position tasks. In separate tests with the upper arm vertical and the elbow flexed to 1.57 rad, the seated subjects maintained either a constant upward force at the wrist (force task) or a constant elbow angle (position task). The force and position tasks were performed in random order at a target force equal to 3.6 ± 2.1% (mean ± SD) of the maximal voluntary contraction (MVC) force above the recruitment threshold of an isolated motor unit from the biceps brachii. Each subject maintained the two tasks for an identical duration (161 ± 93 s) at a mean target force of 22.4 ± 13.6% MVC. As expected, the rate of increase in the fluctuations in motor output (force task: SD for detrended force; position task: SD for vertical acceleration) was greater for the position task than the force task ( P < 0.001). The amplitude of the coefficient of variation (CV) and the power spectra for motor unit discharge were similar between tasks ( P > 0.1) and did not change with time ( P > 0.1), and could not explain the different rates of increase in motor output fluctuations for the two tasks. Nonetheless, frequency modulation of motor unit discharge differed during the two tasks and predicted ( P < 0.001) both the CV for discharge rate (force task: 1–3, 12–13, and 14–15 Hz; position task: 0–1, and 1–2 Hz) and the fluctuations in motor output (force task: 5–6, 9–10, 12–13, and 14–15 Hz; position task: 6–7, 14–15, 17–19, 20–21, and 23–24 Hz). Frequency modulation of motor unit discharge rate differed for the force and position tasks and influenced the ability to sustain steady contractions.


2006 ◽  
Vol 100 (6) ◽  
pp. 1928-1937 ◽  
Author(s):  
Kevin G. Keenan ◽  
Dario Farina ◽  
Roberto Merletti ◽  
Roger M. Enoka

The purpose of the study was to evaluate the influence of selected physiological parameters on amplitude cancellation in the simulated surface electromyogram (EMG) and the consequences for spike-triggered averages of motor unit potentials derived from the interference and rectified EMG signals. The surface EMG was simulated from prescribed recruitment and rate coding characteristics of a motor unit population. The potentials of the motor units were detected on the skin over a hand muscle with a bipolar electrode configuration. Averages derived from the EMG signal were generated using the discharge times for each of the 24 motor units with lowest recruitment thresholds from a population of 120 across three conditions: 1) excitation level; 2) motor unit conduction velocity; and 3) motor unit synchronization. The area of the surface-detected potential was compared with potentials averaged from the interference, rectified, and no-cancellation EMGs. The no-cancellation EMG comprised motor unit potentials that were rectified before they were summed, thereby preventing cancellation between the opposite phases of the potentials. The percent decrease in area of potentials extracted from the rectified EMG was linearly related to the amount of amplitude cancellation in the interference EMG signal, with the amount of cancellation influenced by variation in excitation level and motor unit conduction velocity. Motor unit synchronization increased potentials derived from both the rectified and interference EMG signals, although cancellation limited the increase in area for both potentials. These findings document the influence of amplitude cancellation on motor unit potentials averaged from the surface EMG and the consequences for using the procedure to characterize motor unit properties.


Sign in / Sign up

Export Citation Format

Share Document