scholarly journals Recruitment of motor units in two fascicles of the semispinalis cervicis muscle

2012 ◽  
Vol 107 (11) ◽  
pp. 3078-3085 ◽  
Author(s):  
Jochen Schomacher ◽  
Jakob Lund Dideriksen ◽  
Dario Farina ◽  
Deborah Falla

This study investigated the behavior of motor units in the semispinalis cervicis muscle. Intramuscular EMG recordings were obtained unilaterally at levels C2 and C5 in 15 healthy volunteers (8 men, 7 women) who performed isometric neck extensions at 5%, 10%, and 20% of the maximal force [maximum voluntary contraction (MVC)] for 2 min each and linearly increasing force contractions from 0 to 30% MVC over 3 s. Individual motor unit action potentials were identified. The discharge rate and interspike interval variability of the motor units in the two locations did not differ. However, the recruitment threshold of motor units detected at C2 ( n = 16, mean ± SD: 10.3 ± 6.0% MVC) was greater than that of motor units detected at C5 ( n = 92, 6.9 ± 4.3% MVC) ( P < 0.01). A significant level of short-term synchronization was identified in 246 of 307 motor unit pairs when computed within one spinal level but only in 28 of 110 pairs of motor units between the two levels. The common input strength, which quantifies motor unit synchronization, was greater for pairs within one level (0.47 ± 0.32) compared with pairs between levels (0.09 ± 0.07) ( P < 0.05). In a second experiment on eight healthy subjects, interference EMG was recorded from the same locations during a linearly increasing force contraction from 0 to 40% MVC and showed significantly greater EMG amplitude at C5 than at C2. In conclusion, synaptic input is distributed partly independently and nonuniformly to different fascicles of the semispinalis cervicis muscle.

2003 ◽  
Vol 90 (2) ◽  
pp. 1350-1361 ◽  
Author(s):  
Anna M. Taylor ◽  
Evangelos A. Christou ◽  
Roger M. Enoka

To identify the mechanisms responsible for the fluctuations in force that occur during voluntary contractions, experimental measurements were compared with simulated forces in the time and frequency domains at contraction intensities that ranged from 2 to 98% of the maximum voluntary contraction (MVC). The abduction force exerted by the index finger due to an isometric contraction of the first dorsal interosseus muscle was measured in 10 young adults. Force was simulated with computer models of motor-unit recruitment and rate coding for a population of 120 motor units. The models varied recruitment and rate-coding properties of the motor units and the activation pattern of the motor-unit population. The main finding was that the experimental observations of a minimum in the coefficient of variation (CV) for force (1.7%) at approximately 30% MVC and a plateau at higher forces could not be replicated by any of the models. The model that increased the level of short-term synchrony with excitatory drive provided the closest fit to the experimentally observed relation between the CV for force and the mean force. In addition, the results for the synchronization model extended previous modeling efforts to show that the effect of synchronization is independent from that of discharge-rate variability. Most of the power in the force power spectra for the models was contained in the frequency bins below 5 Hz. Only a model that included a low-frequency oscillation in excitation, however, could approximate the experimental finding of peak power at a frequency below 2 Hz: 38% of total power at 0.99 Hz and 43% at 1.37 Hz, respectively. In contrast to the experimental power spectra, all model spectra included a second peak at a higher frequency. The secondary peak was less prominent in the synchronization model because of greater variability in discharge rate. These results indicate that the variation in force fluctuations across the entire operating range of the muscle cannot be explained by a single mechanism that influences the output of the motor-unit population.


2008 ◽  
Vol 99 (2) ◽  
pp. 1008-1019 ◽  
Author(s):  
Tamara J. Dartnall ◽  
Michael A. Nordstrom ◽  
John G. Semmler

The purpose of this study was to determine the effect of eccentric exercise on correlated motor unit discharge (motor unit synchronization and coherence) during low-force contractions of the human biceps brachii muscle. Eight subjects (age, 25 ± 7 yr) performed three tasks involving isometric contraction of elbow flexors while EMG (surface and intramuscular) records were obtained from biceps brachii. Tasks were 1) maximum voluntary contraction (MVC); 2) constant-force contraction at various submaximal targets; and 3) sustained discharge of pairs of concurrently active motor units for 2–5 min. These tasks were performed before, immediately after, and 24 h after fatiguing eccentric exercise. MVC force declined 46% immediately after eccentric exercise and remained depressed (31%) 24 h later, which is indicative of muscle damage. For the constant-force task, biceps brachii EMG (∼100% greater) and force fluctuations (∼75% greater) increased immediately after exercise, and both recovered by ∼50% 24 h later. Motor unit synchronization, quantified by cross-correlation of motor unit pairs during low-force (1–26% MVC) contractions, was 30% greater immediately after ( n = 105 pairs) and 24 h after exercise ( n = 92 pairs) compared with before exercise ( n = 99 pairs). Similarly, motor unit coherence at low (0–10 Hz) frequencies was 20% greater immediately after exercise and 34% greater 24 h later. These results indicate that the series of events leading to muscle damage from eccentric exercise alters the correlated behavior of human motor units in biceps brachii muscle for ≥24 h after the exercise.


Author(s):  
Eduardo Martinez-Valdes ◽  
Francesco Negro ◽  
Michail Arvanitidis ◽  
Dario Farina ◽  
Deborah Falla

At high forces, the discharge rates of lower and higher threshold motor units (MU) are influenced in a different way by muscle pain. These differential effects may be particularly important for performing contractions at different speeds since the proportion of lower and higher threshold MUs recruited varies with contraction velocity. We investigated whether MU discharge and recruitment strategies are differentially affected by pain depending on their recruitment threshold (RT), across a range of contraction speeds. Participants performed ankle dorsiflexion sinusoidal-isometric contractions at two frequencies (0.25Hz and 1Hz) and two modulation amplitudes [5% and 10% of the maximum voluntary contraction (MVC)] with a mean target torque of 20%MVC. High-density surface electromyography recordings from the tibialis anterior muscle were decomposed and the same MUs were tracked across painful (hypertonic saline injection) and non-painful conditions. Torque variability, mean discharge rate (MDR), DR variability (DRvar), RT and the delay between the cumulative spike train and the resultant torque output (neuromechanical delay, NMD) were assessed. The average RT was greater at faster contraction velocities (p=0.01) but was not affected by pain. At the fastest contraction speed, torque variability and DRvar were reduced (p<0.05) and MDR was maintained. Conversely, MDR decreased and DRvar and NMD increased significantly during pain at slow contraction speeds (p<0.05). These results show that reductions in contraction amplitude and increased recruitment of higher threshold MUs at fast contraction speeds appears to compensate for the inhibitory effect of nociceptive inputs on lower threshold MUs, allowing the exertion of fast submaximal contractions during pain.


2008 ◽  
Vol 33 (6) ◽  
pp. 1086-1095 ◽  
Author(s):  
Teatske M. Altenburg ◽  
Cornelis J. de Ruiter ◽  
Peter W.L. Verdijk ◽  
Willem van Mechelen ◽  
Arnold de Haan

A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains unknown. Additionally, there is limited evidence for force enhancement in larger muscles. We therefore investigated lengthening- and shortening-induced changes in activation of the knee extensors. We hypothesized that when the same submaximal torque had to be generated following shortening, muscle activation had to be increased, whereas a lower activation would suffice to produce the same torque following lengthening. Muscle activation following shortening and lengthening (20° at 10°/s) was determined using rectified surface electromyography (rsEMG) in a 1st session (at 10% and 50% maximal voluntary contraction (MVC)) and additionally with EMG of 42 vastus lateralis motor units recorded in a 2nd session (at 4%–47%MVC). rsEMG and motor unit discharge rates following shortening and lengthening were normalized to isometric reference contractions. As expected, normalized rsEMG (1.15 ± 0.19) and discharge rate (1.11 ± 0.09) were higher following shortening (p < 0.05). Following lengthening, normalized rsEMG (0.91 ± 0.10) was, as expected, lower than 1.0 (p < 0.05), but normalized discharge rate (0.99 ± 0.08) was not (p > 0.05). Thus, muscle activation was increased to compensate for a reduced force capacity following shortening by increasing the discharge rate of the active motor units (rate coding). In contrast, following lengthening, rsEMG decreased while the discharge rates of active motor units remained similar, suggesting that derecruitment of units might have occurred.


Author(s):  
David Burke ◽  
James Howells

The motor unit represent the final output of the motor system. Each consists of a motoneuron, its axon, neuromuscular junctions, and muscle fibres innervated by that axon. The discharge of a motor unit can be followed by recording its electromyographic signature, the motor unit action potential. Motoneurons are not passive responders to the excitatory and inhibitory influences on them from descending and segmental sources. Their properties can change, e.g. due to descending monoaminergic pathways, which can alter their responses to other inputs (changing ‘reflex gain’). Contraction strength depends on the number of active motor units, their discharge rate, and whether the innervated muscle fibres are slow-twitch producing low force, but resistant to fatigue, fast-twitch producing more force, but susceptible to fatigue, or intermediate fast-twitch fatigue-resistant. These properties are imposed by the parent motoneurons, and the innervated muscle fibres have different histochemical profiles (oxidative, glycolytic, or oxidative-glycolytic, respectively).


2013 ◽  
Vol 109 (12) ◽  
pp. 2947-2954 ◽  
Author(s):  
Li-Wei Chou ◽  
Jacqueline A. Palmer ◽  
Stuart Binder-Macleod ◽  
Christopher A. Knight

Information regarding how motor units are controlled to produce forces in individuals with stroke and the mechanisms behind muscle weakness and movement slowness can potentially inform rehabilitation strategies. The purpose of this study was to describe the rate coding mechanism in individuals poststroke during both constant ( n = 8) and rapid ( n = 4) force production tasks. Isometric ankle dorsiflexion force, motor unit action potentials, and surface electromyography were recorded from the paretic and nonparetic tibialis anterior. In the paretic limb, strength was 38% less and the rate of force development was 63% slower. Linear regression was used to describe and compare the relationships between motor unit and electromyogram (EMG) measures and force. During constant force contractions up to 80% maximal voluntary contraction (MVC), rate coding was compressed and discharge rates were lower in the paretic limb. During rapid muscle contractions up to 90% MVC, the first interspike interval was prolonged and the rate of EMG rise was less in the paretic limb. Future rehabilitation strategies for individuals with stroke could focus on regaining these specific aspects of motor unit rate coding and neuromuscular activation.


2016 ◽  
Vol 115 (6) ◽  
pp. 2924-2930 ◽  
Author(s):  
Seoung Hoon Park ◽  
MinHyuk Kwon ◽  
Danielle Solis ◽  
Neha Lodha ◽  
Evangelos A. Christou

Control of the motor output depends on our ability to precisely increase and release force. However, the influence of aging on force increase and release remains unknown. The purpose of this study, therefore, was to determine whether force control differs while increasing and releasing force in young and older adults. Sixteen young adults (22.5 ± 4 yr, 8 females) and 16 older adults (75.7 ± 6.4 yr, 8 females) increased and released force at a constant rate (10% maximum voluntary contraction force/s) during an ankle dorsiflexion isometric task. We recorded the force output and multiple motor unit activity from the tibialis anterior (TA) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) mean discharge rate and variability of discharge rate of multiple motor units; and 3) power spectrum of the multiple motor units from 0–4, 4–10, 10–35, and 35–60 Hz. Participants exhibited greater force variability while releasing force, independent of age ( P < 0.001). Increased force variability during force release was associated with decreased modulation of multiple motor units from 35 to 60 Hz ( R2 = 0.38). Modulation of multiple motor units from 35 to 60 Hz was further correlated to the change in mean discharge rate of multiple motor units ( r = 0.66) and modulation from 0 to 4 Hz ( r = −0.64). In conclusion, these findings suggest that force control is altered while releasing due to an altered modulation of the motor units.


2020 ◽  
Vol 45 (11) ◽  
pp. 1197-1207
Author(s):  
J. Greig Inglis ◽  
David A. Gabriel

This study evaluated potential sex differences in motor unit (MU) behaviour at maximal and submaximal force outputs. Forty-eight participants, 24 females and 24 males, performed isometric dorsiflexion contractions at 20%, 40%, 60%, 80%, and 100% of a maximum voluntary contraction (MVC). Tibialis anterior electromyography was recorded both by surface and intramuscular electrodes. Compared with males, females had a greater MU discharge rate (MUDR) averaged across all submaximal intensities (Δ 0.45 pps, 2.56%). Males exhibited greater increases in MUDR above 40% MVC, surpassing females at 100% MVC (p’s < 0.01). Averaged across all force outputs, females had a greater incidence of doublet and rapid discharges and a greater percentage of MU trains with doublet and rapid (5–10 ms) discharges (Δ 75.55% and 61.48%, respectively; p’s < 0.01). A subset of males (n = 8) and females (n = 8), matched for maximum force output, revealed that females had even greater MUDR (Δ 1.38 pps, 7.47%) and percentage of MU trains with doublet and rapid discharges (Δ 51.62%, 56.68%, respectively; p’s < 0.01) compared with males at each force output, including 100% MVC. Analysis of the subset of strength-matched males and females suggest that sex differences in MU behaviour may be a result of females needing to generate greater neural drive to achieve fused tetanus. Novelty Females had higher MUDRs and greater percentage of MU trains with doublets across submaximal force outputs (20%–80% MVC). Differences were even greater for a strength matched subset. Differences in motor unit behaviour may arise from musculoskeletal differences, requiring greater neural drive in females.


2000 ◽  
Vol 83 (1) ◽  
pp. 441-452 ◽  
Author(s):  
Wanxiang Yao ◽  
Rew J. Fuglevand ◽  
Roger M. Enoka

The purpose of the study was to determine the effect of motor-unit synchronization on the surface electromyogram (EMG) and isometric force using a computer model of muscle contraction. The EMG and force were simulated by generating muscle fiber action potentials, defining motor-unit mechanical characteristics and territories, estimating motor-unit action potentials, specifying motor-unit discharge times, and imposing various levels of motor-unit synchronization. The output (EMG and force) was simulated at 11 levels of excitation, ranging from 5 to 100% of maximum. To synchronize motor-unit activity, selected motor-unit discharge times were adjusted; however, the number of motor units recruited and the average discharge rate of each unit was constant across synchronization conditions for a given level of excitation. Two levels of synchronization were imposed on the discharge times: a moderate and a high level, which approximated the experimentally observed range of motor-unit synchronization. The moderate level of synchrony caused the average EMG to increase by ∼65%, whereas the high level caused a 130% increase in the EMG with respect to the no-synchrony condition. Neither synchrony condition influenced the magnitude of the average force. However, motor-unit synchronization did increase the amplitude of the fluctuations in the simulated force, especially at intermediate levels of excitation. In conclusion, motor-unit synchronization increased the amplitude of the average rectified EMG and decreased the steadiness of the force exerted by the muscle in simulated contractions.


2020 ◽  
Vol 123 (5) ◽  
pp. 1766-1774
Author(s):  
J. Aeles ◽  
L. A. Kelly ◽  
Y. Yoshitake ◽  
A. G. Cresswell

We recorded for the first time single motor unit action potential trains in the flexor hallucis brevis, a short toe muscle, over the full range of maximum voluntary contraction. Its motor units are recruited up to very high (98%) recruitment thresholds with a substantial range of discharge rates. We further show high variability with crossover of discharge rates as a function of recruitment threshold both between participants and between motor units within participants.


Sign in / Sign up

Export Citation Format

Share Document