output force
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 68)

H-INDEX

19
(FIVE YEARS 3)

Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Guan-Yang Liu ◽  
Yi Wang ◽  
Chao Huang ◽  
Chen Guan ◽  
Dong-Tao Ma ◽  
...  

The goal of haptic feedback in robotic teleoperation is to enable users to accurately feel the interaction force measured at the slave side and precisely understand what is happening in the slave environment. The accuracy of the feedback force describing the error between the actual feedback force felt by a user at the master side and the measured interaction force at the slave side is the key performance indicator for haptic display in robotic teleoperation. In this paper, we evaluate the haptic feedback accuracy in robotic teleoperation via experimental method. A special interface iHandle and two haptic devices, iGrasp-T and iGrasp-R, designed for robotic teleoperation are developed for experimental evaluation. The device iHandle integrates a high-performance force sensor and a micro attitude and heading reference system which can be used to identify human upper limb motor abilities, such as posture maintenance and force application. When a user is asked to grasp the iHandle and maintain a fixed position and posture, the fluctuation value of hand posture is measured to be between 2 and 8 degrees. Based on the experimental results, human hand tremble as input noise sensed by the haptic device is found to be a major reason that results in the noise of output force from haptic device if the spring-damping model is used to render feedback force. Therefore, haptic rendering algorithms should be independent of hand motion information to avoid input noise from human hand to the haptic control loop in teleoperation. Moreover, the iHandle can be fixed at the end effector of haptic devices; iGrasp-T or iGrasp-R, to measure the output force/torque from iGrasp-T or iGrasp-Rand to the user. Experimental results show that the accuracy of the output force from haptic device iGrasp-T is approximately 0.92 N, and using the force sensor in the iHandle can compensate for the output force inaccuracy of device iGrasp-T to 0.1 N. Using a force sensor as the feedback link to form a closed-loop feedback force control system is an effective way to improve the accuracy of feedback force and guarantee high-fidelity of feedback forces at the master side in robotic teleoperation.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 315
Author(s):  
Qianqian Wu ◽  
Zhihui Liu ◽  
Fengyan An ◽  
Bilong Liu

The maglev inertial actuators with high power and mass maybe effective for lateral vibration control of a propulsion shafting. But the mass power ratio of the actuators currently in use is too small to meet the requirements. In the paper, a maglev inertial actuator was innovatively designed with high mass power ratio. The structure of the magnetic circuit assembly and the suspending assembly were designed and optimized. To verify the property of the proposed maglev inertial actuator, a prototype with mass less than 8 kg was developed and tests were carried out. The minimum effective output force can reach 200 N within the frequency band of 20–300 Hz. A lateral vibration of a propulsion shafting system was constructed and the active control effect was tested. The experimental results show that the proposed maglev inertial actuator has a good effect on lateral vibration control of shafting.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jun Shintake ◽  
Daiki Ichige ◽  
Ryo Kanno ◽  
Toshiaki Nagai ◽  
Keita Shimizu

Dielectric elastomer actuators (DEAs) are a promising actuator technology for soft robotics. As a configuration of this technology, stacked DEAs afford a muscle-like contraction that is useful to build soft robotic systems. In stacked DEAs, dielectric and electrode layers are alternately stacked. Thus, often a dedicated setup with complicated processes or sometimes laborious manual stacking of the layers is required to fabricate stacked actuators. In this study, we propose a method to monolithically fabricate stacked DEAs without alternately stacking the dielectric and electrode layers. In this method, the actuators are fabricated mainly through two steps: 1) molding of an elastomeric matrix containing free-form microfluidic channels and 2) injection of a liquid conductive material that acts as an electrode. The feasibility of our method is investigated via the fabrication and characterization of simple monolithic DEAs with multiple electrodes (2, 4, and 10). The fabricated actuators are characterized in terms of actuation stroke, output force, and frequency response. In the actuators, polydimethylsiloxane (PDMS) and eutectic gallium–indium (EGaIn) are used for the elastomeric matrix and electrode material, respectively. Microfluidic channels are realized by dissolving a three-dimensional printed part suspended in the elastomeric structure. The experimental results show the successful implementation of the proposed method and the good agreement between the measured data and theoretical predication, validating the feasibility of the proposed method.


Author(s):  
Yao Zhao ◽  
Kaiyuan Peng ◽  
Jiaxin Xi ◽  
Shima Shahab ◽  
Reza Mirzaeifar

Abstract Locomotion is a critically important topic for soft actuators and robotics, however, the locomotion applications based on two-way shape memory polymers have not been well explored so far. In this work, a crosslinked poly(ethylene-co-vinyl acetate) (cPEVA)-based two-way shape memory polymer is synthesized using dicumyl peroxide (DCP) as the crosslinker. The influence of the DCP concentration on the mechanical properties and the two-way shape memory properties is systematically studied. A Venus flytrap-inspired soft actuator is made by cPEVA, and it is shown that the actuator can efficiently perform gripping movements, indicating that the resultant cPEVA SMP is capable of producing large output force and recovering from large deformations. This polymer is also utilized to make a self-rolling pentagon-shaped device. It is shown that the structure will efficiently roll on a hot surface, proving the applicability of the material in making sophisticated actuators. With introducing an energy barrier, jumping can be accomplished when the stored energy is fast released. Finite element simulations are also conducted to further understand the underlying mechanisms in the complex behavior of actuators based on cPEVA SMP. This work provides critical insights in designing smart materials with external stimulus responsive programmable function for soft actuator applications.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 269
Author(s):  
Tingchen Liao ◽  
Manivannan Sivaperuman Kalairaj ◽  
Catherine Jiayi Cai ◽  
Zion Tsz Ho Tse ◽  
Hongliang Ren

Actuators with variable stiffness have vast potential in the field of compliant robotics. Morphological shape changes in the actuators are possible, while they retain their structural strength. They can shift between a rigid load-carrying state and a soft flexible state in a short transition period. This work presents a hydraulically actuated soft actuator fabricated by a fully 3D printing of shape memory polymer (SMP). The actuator shows a stiffness of 519 mN/mm at 20 ∘C and 45 mN/mm at 50 ∘C at the same pressure (0.2 MPa). This actuator demonstrates a high stiffness variation of 474 mN/mm (10 times the baseline stiffness) for a temperature change of 30 ∘C and a large variation (≈1150%) in average stiffness. A combined variation of both temperature (20–50 ∘C) and pressure (0–0.2 MPa) displays a stiffness variation of 501 mN/mm. The pressure variation (0–0.2 MPa) in the actuator also shows a large variation in the output force (1.46 N) at 50 ∘C compared to the output force variation (0.16 N) at 20 ∘C. The pressure variation is further utilized for bending the actuator. Varying the pressure (0–0.2 MPa) at 20 ∘C displayed no bending in the actuator. In contrast, the same variation of pressure at 50 ∘C displayed a bending angle of 80∘. A combined variation of both temperature (20–50 ∘C) and pressure (0–0.2 MPa) shows the ability to bend 80∘. At the same time, an additional weight (300 g) suspended to the actuator could increase its bending capability to 160∘. We demonstrated a soft robotic gripper varying its stiffness to carry objects (≈100 g) using two individual actuators.


2021 ◽  
Vol 18 (5) ◽  
pp. 172988142110467
Author(s):  
Peng Yin ◽  
Liang Yang ◽  
Shengguan Qu

Sometimes the automation equipment cannot solve all the problems for industrial enterprises, and human workers cannot be replaced by machines in production activities. The possibility that the workers develop work-related musculoskeletal disorders, while performing high intensity and repetitive installation and commissioning work over a long period of time, is very high. A mechanical design of a passive upper extremities exoskeleton suit to reduce the muscles effort of upper limbs is proposed in this article. Thereby, a decrease in the work-related musculoskeletal disorders risk is expected. To evaluate the ergonomic contribution of the passive upper extremities exoskeleton suit, both static and dynamic tool lift experiments were designed, in which 10 volunteers were asked to participate in the experiments. The surface electromyography is captured from these volunteers to measure the magnitude of muscle output forces that are applied with and then without passive upper extremities exoskeleton suit assistance during the process of manual handling, and the tests are collected for comparison. Results show that there is a significant decrease in the output force and fatigue in deltoid, biceps brachii, and brachioradiali, especially in biceps brachial which is up to 67.8%. The implementation of passive upper extremities exoskeleton suit is not only a benefit to reduce workers’ upper extremities fatigue but also ultimately increase the work efficiency by minimizing work-related musculoskeletal disorders and safety accidents.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 211
Author(s):  
Daniele Leonardis ◽  
Luca Tiseni ◽  
Domenico Chiaradia ◽  
Antonio Frisoli

Wearable haptic devices in the shape of actuated thimbles are used to render the sense of touch in teleoperation and virtual reality scenarios. The design of similar devices has to comply with concurring requirements and constraints: lightweight and compactness, intensity and bandwidth of the rendered signals. Micro-sized motors require a mechanical reduction to increase the output force, at the cost of noise and vibrations introduced by conventional gear reducers. Here we propose a different actuation method, based on a miniaturized twisted string actuator and a flexure hinge transmission mechanism. The latter is required to transmit and transform the pulling force of the twist actuator to a pushing force of the plate in contact with the fingerpad. It achieves a lightweight and noiseless actuation in a compact mechanism. In this work, we present design guidelines of the proposed approach, optimization, and FEM analysis of the flexure hinge mechanism, implementation of the prototype, and experimental characterization of the twist actuator measuring frequency response and output force capabilities.


2021 ◽  
Author(s):  
Premkumar Pujali ◽  
Hong Zhou

Abstract A constant force compliant mechanism generates an output force that keeps invariant in a large range of input displacement. Because of the constant force feature and the merits of compliant mechanisms, they are utilized in many applications. A problem in the current constant force compliant mechanisms is their preloading range that is a certain starting range of the input displacement. In the preloading displacement, the output force of a constant force compliant mechanism does not have the desired value. It goes up from zero value. The preloading displacement often occupies one quarter or more of the entire input displacement range, which weakens the performance of constant force compliant mechanisms. The preloading issue is eradicated in this research by using prebuckled beams as components for constructing constant force compliant mechanisms. It is difficult to synthesize constant force compliant mechanisms that are composed of prebuckled beams because of the intertwined force, buckling and deflection characteristics. In this research, the undeformed beams are represented by spline curves and controlled by its interpolation points. The synthesis of constant force compliant mechanisms is systemized as optimizing the design parameters of the composed prebuckled beams. Fully compliant constant force compliant mechanisms are synthesized without preloading. The synthesis solutions are validated by experimental results.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrea Monte ◽  
Matteo Bertucco ◽  
Riccardo Magris ◽  
Paola Zamparo

Changes in muscle shape could play an important role during contraction allowing to circumvent some limits imposed by the fascicle force–velocity (F–V) and power–velocity (P–V) relationships. Indeed, during low-force high-velocity contractions, muscle belly shortening velocity could exceed muscle fascicles shortening velocity, allowing the muscles to operate at higher F–V and P–V potentials (i.e., at a higher fraction of maximal force/power in accordance to the F–V and P–V relationships). By using an ultrafast ultrasound, we investigated the role of muscle shape changes (vastus lateralis) in determining belly gearing (muscle belly velocity/fascicle velocity) and the explosive torque during explosive dynamic contractions (EDC) at angular accelerations ranging from 1000 to 4000°.s–2. By means of ultrasound and dynamometric data, the F–V and P–V relationships both for fascicles and for the muscle belly were assessed. During EDC, fascicle velocity, belly velocity, belly gearing, and knee extensors torque data were analysed from 0 to 150 ms after torque onset; the fascicles and belly F–V and P–V potentials were thus calculated for each EDC. Absolute torque decreased as a function of angular acceleration (from 80 to 71 Nm, for EDC at 1000 and 4000°.s–1, respectively), whereas fascicle velocity and belly velocity increased with angular acceleration (P < 0.001). Belly gearing increased from 1.11 to 1.23 (or EDC at 1000 and 4000°.s–1, respectively) and was positively corelated with the changes in muscle thickness and pennation angle (the changes in latter two equally contributing to belly gearing changes). For the same amount of muscle’s mechanical output (force or power), the fascicles operated at higher F–V and P–V potential than the muscle belly (e.g., P–V potential from 0.70 to 0.56 for fascicles and from 0.65 to 0.41 for the muscle belly, respectively). The present results experimentally demonstrate that belly gearing could play an important role during explosive contractions, accommodating the largest part of changes in contraction velocity and allowing the fascicle to operate at higher F–V and P–V potentials.


Sign in / Sign up

Export Citation Format

Share Document