Modular equations and the genus zero property of moonshine functions

1997 ◽  
Vol 129 (3) ◽  
pp. 413-443 ◽  
Author(s):  
C.J. Cummins ◽  
T. Gannon
Keyword(s):  
1967 ◽  
Vol 8 (1) ◽  
pp. 14-32 ◽  
Author(s):  
A. O. L. Atkin

We writeandso that p(n) is the number of unrestricted partitions of n. Ramanujan [1] conjectured in 1919 that if q = 5, 7, or 11, and 24m ≡ 1 (mod qn), then p(m) ≡ 0 (mod qn). He proved his conecture for n = 1 and 2†, but it was not until 1938 that Watson [4] proved the conjecture for q = 5 and all n, and a suitably modified form for q = 7 and all n. (Chowla [5] had previously observed that the conjecture failed for q = 7 and n = 3.) Watson's method of modular equations, while theoretically available for the case q = 11, does not seem to be so in practice even with the help of present-day computers. Lehner [6, 7] has developed an essentially different method, which, while not as powerful as Watson's in the cases where Γ0(q) has genus zero, is applicable in principle to all primes q without prohibitive calculation. In particular he proved the conjecture for q = 11 and n = 3 in [7]. Here I shall prove the conjecture for q = 11 and all n, following Lehner's approach rather than Watson's. I also prove the analogous and essentially simpler result for c(m), the Fourier coefficient‡ of Klein's modular invariant j (τ) as


2002 ◽  
Vol 45 (1) ◽  
pp. 36-45 ◽  
Author(s):  
C. J. Cummins

AbstractLet G be a discrete subgroup of SL(2, ℝ) which contains Γ(N) for some N. If the genus of X(G) is zero, then there is a unique normalised generator of the field of G-automorphic functions which is known as a normalised Hauptmodul. This paper gives a characterisation of normalised Hauptmoduls as formal q series using modular polynomials.


2020 ◽  
Vol 18 (1) ◽  
pp. 1727-1741
Author(s):  
Yoonjin Lee ◽  
Yoon Kyung Park

Abstract We study the modularity of Ramanujan’s function k ( τ ) = r ( τ ) r 2 ( 2 τ ) k(\tau )=r(\tau ){r}^{2}(2\tau ) , where r ( τ ) r(\tau ) is the Rogers-Ramanujan continued fraction. We first find the modular equation of k ( τ ) k(\tau ) of “an” level, and we obtain some symmetry relations and some congruence relations which are satisfied by the modular equations; these relations are quite useful for reduction of the computation cost for finding the modular equations. We also show that for some τ \tau in an imaginary quadratic field, the value k ( τ ) k(\tau ) generates the ray class field over an imaginary quadratic field modulo 10; this is because the function k is a generator of the field of the modular function on Γ 1 ( 10 ) {{\mathrm{\Gamma}}}_{1}(10) . Furthermore, we suggest a rather optimal way of evaluating the singular values of k ( τ ) k(\tau ) using the modular equations in the following two ways: one is that if j ( τ ) j(\tau ) is the elliptic modular function, then one can explicitly evaluate the value k ( τ ) k(\tau ) , and the other is that once the value k ( τ ) k(\tau ) is given, we can obtain the value k ( r τ ) k(r\tau ) for any positive rational number r immediately.


Sign in / Sign up

Export Citation Format

Share Document