scholarly journals Mixed Tate motives and multiple zeta values

2002 ◽  
Vol 149 (2) ◽  
pp. 339-369 ◽  
Author(s):  
Tomohide Terasoma
2017 ◽  
Vol 5 ◽  
Author(s):  
FRANCIS BROWN

This paper draws connections between the double shuffle equations and structure of associators; Hain and Matsumoto’s universal mixed elliptic motives; and the Rankin–Selberg method for modular forms for $\text{SL}_{2}(\mathbb{Z})$. We write down explicit formulae for zeta elements $\unicode[STIX]{x1D70E}_{2n-1}$ (generators of the Tannaka Lie algebra of the category of mixed Tate motives over $\mathbb{Z}$) in depths up to four, give applications to the Broadhurst–Kreimer conjecture, and solve the double shuffle equations for multiple zeta values in depths two and three.


2021 ◽  
Vol 157 (3) ◽  
pp. 529-572
Author(s):  
Francis Brown

We study the depth filtration on multiple zeta values, on the motivic Galois group of mixed Tate motives over $\mathbb {Z}$ and on the Grothendieck–Teichmüller group, and its relation to modular forms. Using period polynomials for cusp forms for $\mathrm {SL} _2(\mathbb {Z})$, we construct an explicit Lie algebra of solutions to the linearized double shuffle equations, which gives a conjectural description of all identities between multiple zeta values modulo $\zeta (2)$ and modulo lower depth. We formulate a single conjecture about the homology of this Lie algebra which implies conjectures due to Broadhurst and Kreimer, Racinet, Zagier, and Drinfeld on the structure of multiple zeta values and on the Grothendieck–Teichmüller Lie algebra.


2020 ◽  
Vol 14 (10) ◽  
pp. 2685-2712
Author(s):  
Zhongyu Jin ◽  
Jiangtao Li

2015 ◽  
Vol 93 (2) ◽  
pp. 186-193 ◽  
Author(s):  
MASANOBU KANEKO ◽  
MIKA SAKATA

We give three identities involving multiple zeta values of height one and of maximal height: an explicit formula for the height-one multiple zeta values, a regularised sum formula and a sum formula for the multiple zeta values of maximal height.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Masataka Ono ◽  
Shin-ichiro Seki ◽  
Shuji Yamamoto

2017 ◽  
Vol 170 ◽  
pp. 228-249 ◽  
Author(s):  
P. Akhilesh

2018 ◽  
Vol 14 (04) ◽  
pp. 975-987
Author(s):  
Hideki Murahara ◽  
Mika Sakata

An explicit formula for the height-one multiple zeta values (MZVs) was proved by Kaneko and the second author. We give an alternative proof of this result and its generalization. We also prove its counterpart for the finite multiple zeta values (FMZVs).


2010 ◽  
Vol 2010 (24) ◽  
pp. 4628-4697 ◽  
Author(s):  
Dominique Manchon ◽  
Sylvie Paycha

Sign in / Sign up

Export Citation Format

Share Document