scholarly journals Optimal results in Lorentzian Aubry–Mather theory

Author(s):  
Stefan Suhr

AbstractThis article complements the Lorentzian Aubry–Mather Theory in Suhr (Geom Dedicata 160:91–117, 2012; J Fixed Point Theory Appl 21:71, 2019) by giving optimal multiplicity results for the number of maximal invariant measures. As an application the optimal Lipschitz continuity of the time separation on the Abelian cover is established.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ruipeng Chen ◽  
Xiaoya Li

AbstractIn this paper, several novel existence and multiplicity results are established for a coupled functional differential system with multi-parameters. The discussion is based upon fixed point theory, and our main findings enrich and complement those available in the literature.


2019 ◽  
Vol 14 (3) ◽  
pp. 311 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Zakia Hammouch ◽  
Dumitru Baleanu

A virus that causes hepatitis E is known as (HEV) and regarded on of the reason for lever inflammation. In mathematical aspects a very low attention has been paid to HEV dynamics. Therefore, the present work explores the HEV dynamics in fractional derivative. The Caputo–Fabriizo derivative is used to study the dynamics of HEV. First, the essential properties of the model will be presented and then describe the HEV model with CF derivative. Application of fixed point theory is used to obtain the existence and uniqueness results associated to the model. By using Adams–Bashfirth numerical scheme the solution is obtained. Some numerical results and tables for arbitrary order derivative are presented.


1960 ◽  
Vol 34 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Richard G. Swan

2007 ◽  
Vol 16 (4) ◽  
pp. 375-398 ◽  
Author(s):  
Władysław Kulpa ◽  
Andrzej Szymanski

2013 ◽  
Vol 2013 ◽  
pp. 1-1 ◽  
Author(s):  
Wei-Shih Du ◽  
Erdal Karapınar ◽  
Lai-Jiu Lin ◽  
Gue Myung Lee ◽  
Tamaki Tanaka

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ruofeng Rao ◽  
Zhilin Pu

By formulating a contraction mapping and the matrix exponential function, the authors apply linear matrix inequality (LMI) technique to investigate and obtain the LMI-based stability criterion of a class of time-delay Takagi-Sugeno (T-S) fuzzy differential equations. To the best of our knowledge, it is the first time to obtain the LMI-based stability criterion derived by a fixed point theory. It is worth mentioning that LMI methods have high efficiency and other advantages in largescale engineering calculations. And the feasibility of LMI-based stability criterion can efficiently be computed and confirmed by computer Matlab LMI toolbox. At the end of this paper, a numerical example is presented to illustrate the effectiveness of the proposed methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Chakkrid Klin-eam ◽  
Cholatis Suanoom

Fixed-point theory in complex valued metric spaces has greatly developed in recent times. In this paper, we prove certain common fixed-point theorems for two single-valued mappings in such spaces. The mappings we consider here are assumed to satisfy certain metric inequalities with generalized fixed-point theorems due to Rouzkard and Imdad (2012). This extends and subsumes many results of other authors which were obtained for mappings on complex-valued metric spaces.


2005 ◽  
Vol 2005 (5) ◽  
pp. 789-801
Author(s):  
Bijendra Singh ◽  
Shishir Jain ◽  
Shobha Jain

Rhoades (1996) proved a fixed point theorem in a boundedD-metric space for a contractive self-map with applications. Here we establish a more general fixed point theorem in an unboundedD-metric space, for two self-maps satisfying a general contractive condition with a restricted domain ofxandy. This has been done by using the notion of semicompatible maps inD-metric space. These results generalize and improve the results of Rhoades (1996), Dhage et al. (2000), and Veerapandi and Rao (1996). These results also underline the necessity and importance of semicompatibility in fixed point theory ofD-metric spaces. All the results of this paper are new.


Sign in / Sign up

Export Citation Format

Share Document