Prediction of mass transfer coefficient in rotating bed contactor (Higee) using artificial neural network

2008 ◽  
Vol 45 (4) ◽  
pp. 451-457 ◽  
Author(s):  
Dipendu Saha
2020 ◽  
pp. 238-238
Author(s):  
Adel Bouali ◽  
Salah Hanini ◽  
Brahim Mohammedi ◽  
Mouloud Boumahdi

The flow and heat transfer characteristics in a nuclear power plant in the event of a serious accident are simulated by boiling water in an inclined rectangular channel. In this study an artificial neural network model was developed with the aim of predicting heat transfer coefficient (HTC) for flow boiling of water in inclined channel, the network was designed and trained by means of 520 experimental data points that were selected from within the literature. orientation ,mass flux, quality and heat flow which were employed to serve as variables of input of multiple layer perceptron (MLP) neural network, whereas the analogous HTC was selected to be its output. Via the method of trial-and-error, MLP network with 30 neurons in the hidden layer was attained as optimal ANN structure. The fact that is was enabled to predict accurately the HTC. For the training set, the mean relative absolute error (MRAE) is about 0.68 % and the correlation coefficient (R) is about 0.9997. As for the testing and validation set they are respectively about 0.60 % and 0.9998 and about 0.79 % and 0.9996. The comparison of the developed ANN model with experimental data and empirical correlations in vertical channel under the low flow rate and low quality shows a good agreement.


Author(s):  
Adel A. Al-Hemiri ◽  
Nada S. Ahmedzeki

An artificial neural network (ANN) was applied for the prediction of the heat transfer coefficient in bubble columns, in order to obtain a general model and to facilitate the scale up of these multiphase contactors, covering a wide range of operating conditions, physical properties, and column dimensions, obtained from literature. A large number of data was collected (more than 1000) via a comprehensive literature survey. Selected parameters affecting the heat transfer coefficient were organized in six groups to serve as the input parameters. These were: gas superficial velocity, gas density, liquid density, diameter of the column, liquid viscosity, and gas hold-up. Four Back-Propagation Networks (BPNNS) were built. Two were trained using a different number of input parameters. The first ANN was trained with six inputs, which were the aforementioned parameters. The second was trained with three inputs only. These were gas velocity, liquid viscosity and gas hold-up. Each ANN was examined for two structures i.e., one hidden layer and two hidden layers. Comparison between these networks was made to find the optimal ANN structure with minimum %AARE and the maximum correlation coefficient (%R). It was found that the ANN structure of [6-13-1] with a %AARE of 16.2 and a %R of 94 was the best.


Sign in / Sign up

Export Citation Format

Share Document