scholarly journals Heat transfer performance evaluation and prediction of correlation for turbulent flow through a tube with helical tape inserts at higher Reynolds number

2015 ◽  
Vol 52 (6) ◽  
pp. 1219-1230 ◽  
Author(s):  
Muhammad Mostafa Kamal Bhuiya ◽  
M. S. U. Chowdhury ◽  
J. U. Ahamed ◽  
A. K. Azad
2019 ◽  
Vol 23 (4) ◽  
pp. 2429-2436
Author(s):  
Fengye Yang ◽  
Guanghui Zhou ◽  
Pengfei Zhao ◽  
Enhai Liu ◽  
Haijun Li ◽  
...  

The influence of the louver fin?s structure on the heat transfer performance of a parallel flow gas cooler is studied, and a 3-D model for an elliptical louver fin is simulated for analysis of the heat transfer and flow resistance characteristics of the fin. The micro-channel structure of the fin is optimized to give the best comprehensive performance evaluation by suitable choice of fin?s thickness and the space between the adjacent louvers for given range of Reynolds number.


Author(s):  
M.M.K. Bhuiya ◽  
M.S.U. Chowdhury ◽  
J.U. Ahamed ◽  
M.J.H. Khan ◽  
M.A.R. Sarkar ◽  
...  

1981 ◽  
Vol 103 (2) ◽  
pp. 212-217 ◽  
Author(s):  
S. Mochizuki ◽  
Wen-Jei Yang

Heat transfer and pressure drop performance are experimentally studied for laminar radial flow through a stack of corotating annular disks. The disk surfaces are heated by condensing steam to create constant surface temperature condition. The traditionally defined friction factor is modified to include the effect of centrifugal force induced by the rotation of the heat transfer surface on core pressure drop. Empirical equations are derived for the heat transfer and friction factors at zero rotational speed. Test results are obtained for various rotational speeds. It is disclosed that (1) The transition in the radial flow through rotating parallel disk passages occurs at the Reynolds number (based on the hydraulic diameter of the flow passage) of 3000 at which stall propagation occurs in the rotor. (2) In the laminar flow regime, its heat transfer performance at zero rotational speed is superior to forced convection in the triangular, square, annular, rectangular and parallel-plane geometries. (3) The effects of disk surface rotation are twofold: a significant augmentation in heat transfer accompanied by a very substantial reduction in friction loss. (4) These rotational effects decrease with an increase in the fluid flow rate until the transition Reynolds number where the effects of centrifugal and Coriolis forces diminish is reached. (5) Heat transfer performance at low through flows is superior to that of high-performance surfaces for compact heat exchangers.


2014 ◽  
Vol 22 (01) ◽  
pp. 1450005 ◽  
Author(s):  
SHUICHI TORII

This paper aims to study the convective heat transfer behavior of aqueous suspensions of nanoparticles flowing through a horizontal tube heated under constant heat flux condition. Consideration is given to the effects of particle concentration and Reynolds number on heat transfer enhancement and the possibility of nanofluids as the working fluid in various heat exchangers. It is found that (i) significant enhancement of heat transfer performance due to suspension of nanoparticles in the circular tube flow is observed in comparison with pure water as the working fluid, (ii) enhancement is intensified with an increase in the Reynolds number and the nanoparticles concentration, and (iii) substantial amplification of heat transfer performance is not attributed purely to the enhancement of thermal conductivity due to suspension of nanoparticles.


1993 ◽  
Vol 115 (3) ◽  
pp. 560-567 ◽  
Author(s):  
N. Zhang ◽  
J. Chiou ◽  
S. Fann ◽  
W.-J. Yang

Experiments are performed to determine the local heat transfer performance in a rotating serpentine passage with rib-roughened surfaces. The ribs are placed on the trailing and leading walls in a corresponding posited arrangement with an angle of attack of 90 deg. The rib height-to-hydraulic diameter ratio, e/Dh, is 0.0787 and the rib pitch-to-height ratio, s/e, is 11. The throughflow Reynolds number is varied, typically at 23,000, 47,000, and 70,000 in the passage both at rest and in rotation. In the rotation cases, the rotation number is varied from 0.023 to 0.0594. Results for the rib-roughened serpentine passages are compared with those of smooth ones in the literature. Comparison is also made on results for the rib-roughened passages between the stationary and rotating cases. It is disclosed that a significant enhancement is achieved in the heat transfer in both the stationary and rotating cases resulting from an installation of the ribs. Both the rotation and Rayleigh numbers play important roles in the heat transfer performance on both the trailing and leading walls. Although the Reynolds number strongly influences the Nusselt numbers in the rib-roughened passage of both the stationary and rotating cases, Nuo and Nu, respectively, it has little effect on their ratio Nu/Nuo.


Sign in / Sign up

Export Citation Format

Share Document