scholarly journals Conductive sub-layer of twisted-tape-induced swirl-flow heat transfer in vertical circular tubes with various twisted-tape inserts

2017 ◽  
Vol 54 (4) ◽  
pp. 963-983 ◽  
Author(s):  
K. Hata ◽  
K. Fukuda ◽  
S. Masuzaki
2020 ◽  
Author(s):  
C. Langston ◽  
C. Wiggins ◽  
L. Carasik ◽  
M. Murphy ◽  
R. McGuire ◽  
...  

Author(s):  
R. J. Yadav ◽  
Sandeep Kore ◽  
V. N. Riabhole

Heat transfer and pressure drop characteristics in a circular tube with twisted tapes have been investigated experimentally and numerically using different working fluids by many researchers for wide range of Reynolds number. The swirl was generated by tape inserts of various twist ratios. The various twist ratios are considered Many researchers formed generalized correlations to predict friction factors and convective heat transfer coefficients with twisted tapes in a tube for a wide range of Reynolds numbers and Prandtl numbers. Satisfactory agreement was obtained between the present correlations and the data of others validate the proposed correlations. The experimental or numerical predictions were compared with earlier correlations revealing good agreement between them. From the literature review it is observed that most studies are mainly focused on the heat transfer enhancement using twisted tape by experimental or numerical solution. An investigation with analytical approach is rarely reported. Therefore, the main aim of the present work is to form a correlation from theoretical approach for Nusselt number for circular tube with twisted tape. Application of dimensional analysis to heat transfer in tape generated swirl flow is carried out.


2000 ◽  
Vol 43 (15) ◽  
pp. 2669-2680 ◽  
Author(s):  
Francisco Ezquerra Larrodé ◽  
Christos Housiadas ◽  
Yannis Drossinos

2013 ◽  
Vol 284-287 ◽  
pp. 888-893 ◽  
Author(s):  
Ho Keun Kang ◽  
Soo Whan Ahn ◽  
Myung Sung Lee

Numerical predictions of characteristics of turbulent flows through a square duct (30 30 mm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are conducted to investigate regionally averaged heat transfer and friction factors by using CFX 11.0 commercial code. The validity of the numerical results is confirmed by measurement. Reynolds numbers are varied between 8,900 and 29,000. A rib height-to-channel hydraulic diameter (e/Dh) of 0.067 and a length-to hydraulic diameter (L/Dh) of 30 are considered. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. The twisted tape is 0.1 mm thick carbon steel sheet with diameter of 28mm, length of 900mm and 2.5 turns. Each wall of the square channel is composed of the isolated aluminum section. The present study demonstrates that the twisted tape with interrupted ribs provides a greater overall heat transfer performance over the twisted tape with no ribs in the square duct.


1993 ◽  
Vol 115 (4) ◽  
pp. 881-889 ◽  
Author(s):  
R. M. Manglik ◽  
A. E. Bergles

Laminar flow correlations for f and Num are developed based on experimental data for water and ethylene glycol, with tape inserts of three different twist ratios. The uniform wall temperature condition is considered, which typifies practical heat exchangers in the chemical and process industry. These and other available data are analyzed to devise flow regime maps that characterize twisted-tape effects in terms of the dominant enhancement mechanisms. Depending upon flow rates and tape geometry, the enhancement in heat transfer is due to the tube partitioning and flow blockage, longer flow path, and secondary fluid circulation; fin effects are found to be negligible in snug- to loose-fitting tapes. The onset of swirl flow and its intensity is determined by a swirl parameter, Sw=Resw/y, that defines the interaction between viscous, convective inertia, and centrifugal forces. Buoyancy-driven free convection that comes into play at low flow rates with large y and ΔTw is shown to scale as Gr/Sw2≫ 1. These parameters, along with numerical baseline solutions for laminar flows with y = ∞, are incorporated into correlations for f and Num by matching the appropriate asymptotic behavior. The correlations describe the experimental data within ±10 to 15 percent, and their generalized applicability is verified by the comparison of predictions with previously published data.


Sign in / Sign up

Export Citation Format

Share Document