Preliminary Measurements of Swirl Flow Heat Transfer Enhancements for Reactor Heat Exchanger Technology

2020 ◽  
Author(s):  
C. Langston ◽  
C. Wiggins ◽  
L. Carasik ◽  
M. Murphy ◽  
R. McGuire ◽  
...  
2018 ◽  
Vol 6 (3) ◽  
pp. 1-12
Author(s):  
Kamil Abdul Hussien

Abstract-The present work investigates the enhancement of heat transfer by using different number of circular fins (8, 10, 12, 16, and 20) in double tube counter flow heat exchanger experimentally. The fins are made of copper with dimensions 66 mm OD, 22 mm ID and 1 mm thickness. Each fin has three of 14 mm diameter perforations located at 120o from each to another. The fins are fixed on a straight smooth copper tube of 1 m length, 19.9 mm ID and 22.2 mm OD. The tube is inserted inside the insulated PVC tube of 100 mm ID. The cold water is pumped around the finned copper tube, inside the PVC, at mass flow rates range (0.01019 - 0.0219) kg/s. The Reynold's number of hot water ranges (640 - 1921). The experiment results are obtained using six double tube heat exchanger (1 smooth tube and the other 5 are finned one). The results, illustrated that the heat transfer coefficient proportionally with the number of fin. The results also showed that the enhancement ratio of heat transfer for finned tube is higher than for smooth tube with (9.2, 10.2, 11.1, 12.1 13.1) times for number of fins (8, 10, 12, 16 and 20) respectively.


2018 ◽  
Vol 225 ◽  
pp. 01023
Author(s):  
T.M. Yusof ◽  
M.F. Basrawi ◽  
A. Shahrani ◽  
H. Ibrahim

Ground heat exchanger is an exciting technique to reduce energy consumption in building especially in hot climate countries. Implementation of GHE for commercial unit in Malaysia is almost none in record. Thus, performance study of the GHE in Malaysia is crucial to be conducted either experimentally or numerically. Therefore, this paper presents the performance of GHE in term of effectiveness, outlet temperature and rate of heat transfer based on mathematical model. The model is developed based on cross flow heat exchanger with one fluid unmixed. There are two variable parameter used in the analysis which is effectiveness and flowrate of the air for 25 meter length of a PVC pipe. Three effectiveness values which is 0.8, 0.9 and 0.99 have been analysed in this study. Meanwhile, flowrate of air is ranging from 0.02 to 0.2 kg/s. Results show that flowrate at 0.02 kg/s gives great temperature reduction in the pipe compared with higher flowrate. However, flowrate of 0.2 kg/s produces higher cooling potential. Characteristic of the GHE for the rate of heat transfer with 80, 90 and 99 percent effectiveness also have been developed and it has been found that effectiveness of 0.9 provide good combination between flowrate and the rate of heat transfer for 25 meter length of the pipe


Author(s):  
A. F. Tenbusch

Industrial burners provide process heat for a wide range of applications including cogeneration power production. In such applications a (typically) natural gas fired stationary turbine powers an electric generator and indirectly powers a heat recover steam generator (HRSG). The HRSG steam cycle operates by reclaiming the residual thermal energy of the gas turbine exhaust (GTE) flow. Burners are used to reheat the GTE and increase plant capacity during peak demand periods. CFD modeling is used in the design of burner systems for HRSG applications. GTE flow exiting the turbine unit is passed through a diffuser and then expanded into ductwork where the steam system heat exchangers are located. The expansion of the GTE flow from the turbine diffuser to the full cross section of the ductwork is usually severe and creates an uneven flow distribution. Flow correcting structure may be needed to distribute the flow depending upon the severity of the duct expansion. CFD modeling is used to predict the flow distribution of the GTE and guide the design of any necessary flow correcting structure. Burners are typically installed in an array upstream of the application heat exchanger inlet. CFD combustion, heat transfer, and flow analysis is employed in the burner system design process to locate the burner array, determine any necessary flow baffling, and to ensure and provide a uniform thermal distribution at the downstream heat exchanger inlet. Excessive thermal variation in the GTE flow entering the heat exchanger results in large temperature gradients that can lead to thermal cracking and fatigue of the heat exchanger surfaces. CFD modeling is used to ensure that the burner system design produces a uniform flow and temperature distribution at the heat exchanger inlet region downstream of the burners. This report presents a case study of a CFD flow, heat-transfer, and combustion analysis for a typical HRSG burner application. Two CFD models were constructed for the analysis. The first model included the coupled effects of flow, heat transfer, and combustion for the entire HRSG model volume, but excluded the effects of thermal radiation. The second model included a sub-domain of the HRSG volume near the burner and included the additional effects of thermal radiation, both surface radiation and the effects of the radiatively participating flue gas. Radiative effects were included in the second model by employing the Discrete Transfer Method. Results of the study showed the significant role thermal radiative heat transfer had on the resulting temperature predictions downstream of the flame zone.


1999 ◽  
Vol 121 (1) ◽  
pp. 110-117 ◽  
Author(s):  
A. Muley ◽  
R. M. Manglik

Experimental heat transfer and isothermal pressure drop data for single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. In a single-pass U-type counterflow PHE, three different chevron plate arrangements are considered: two symmetric plate arrangements with β = 30 deg/30 deg and 60 deg/60 deg, and one mixed-plate arrangement with β = 30 deg/60 deg. For water (2 < Pr < 6) flow rates in the 600 < Re < 104 regime, data for Nu and f are presented. The results show significant effects of both the chevron angle β and surface area enlargement factor φ. As β increases, and compared to a flat-plate pack, up to two to five times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Increasing φ also has a similar, though smaller effect. Based on experimental data for Re a 7000 and 30 deg ≤ β ≤ 60 deg, predictive correlations of the form Nu = C1,(β) D1(φ) Rep1(β)Pr1/3(μ/μw)0.14 and f = C2(β) D2(φ) Rep2(β) are devised. Finally, at constant pumping power, and depending upon Re, β, and φ, the heat transfer is found to be enhanced by up to 2.8 times that in an equivalent flat-plate channel.


2011 ◽  
Vol 32 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Isak Kotcioglu ◽  
Ahmet Cansiz ◽  
Sinan Caliskan ◽  
Senol Baskaya

Sign in / Sign up

Export Citation Format

Share Document