Heat and mass transfer performance of wet air flowing around circular and elliptic tube in plate fin heat exchangers for air cooling

2019 ◽  
Vol 55 (12) ◽  
pp. 3661-3673 ◽  
Author(s):  
Shiquan He ◽  
Xiaoqing Zhou ◽  
Feng Li ◽  
Huijun Wu ◽  
Qiliang Chen ◽  
...  
2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Worachest Pirompugd ◽  
Chi-Chuan Wang ◽  
Somchai Wongwises

For evaluating performance of fin-and-tube heat exchangers under dehumidifying conditions, the recent lumped approach models are based on the enthalpy potential or equivalent dry bulb temperature. This study proposes a new lumped approach model based on the dry bulb temperature difference. The concept of dry bulb temperature was first presented by McQuiston for derivation of fin efficiency under dehumidifying conditions in 1975. This concept is simpler than the concepts of enthalpy potential and equivalent dry bulb temperature. Nevertheless, it cannot be found that this concept is applied to the fin-and-tube heat exchangers. Moreover, this study also presents the finite circular fin method (FCFM) based on the dry bulb temperature and equivalent dry bulb temperature. The FCFM was first presented in our published literature but it was based on the enthalpy potential. The FCFM is done by dividing the fin-and-tube heat exchanger into many small segments. Then, the segments are divided into three cases: fully dry condition, fully wet condition, and partially wet condition. From the results, the new lumped approach model based on dry bulb temperature gives a good result. It is the simplest method for evaluating heat transfer performance of fin-and-tube heat exchangers under fully wet conditions. For the FCFM, the heat and mass transfer characteristics obtained by dry bulb temperature and equivalent dry bulb temperature are nearly the same as those obtained by the enthalpy potential. However, the heat and mass transfer characteristics by the FCFM based on equivalent dry bulb temperature are higher than those obtained by the FCFM based on dry bulb temperature. This is because of the effect of the nonconstant term in the two methods. The correlations applicable for both fully wet and partially wet conditions for the FCFMs based on equivalent dry bulb temperature and dry bulb temperature are proposed to describe the heat and mass transfer characteristics for the present plain fin configuration.


2016 ◽  
Vol 24 (02) ◽  
pp. 1630003 ◽  
Author(s):  
Anirban Sur ◽  
Randip K. Das

Researchers proved that, heat powered adsorption refrigeration technology is very effective methods for reutilization of low-grade thermal energy such as industrial waste heat, solar energy, and exhaust gases from engines. But to make it commercially competitive with the well-known vapor compression and absorption refrigeration system, the processes require high rates of heat and mass transfer characteristic between adsorbate and adsorbent as well as externally supplied heat exchanging fluid. This paper reviews various techniques that have been developed and applied to enhance the heat transfer and mass transfer in adsorber beds, and also discuss their effects of the performance on adsorption system. A comprehensive literature review has been conducted and it was concluded that this technology, although attractive, has limitations regarding its heat and mass transfer performance that seem difficult to overcome. Therefore, more researches are required to improve heat and mass transfer performance and sustainability of basic adsorption cycles.


2018 ◽  
Vol 240 ◽  
pp. 02006 ◽  
Author(s):  
Valery Gorobets ◽  
Yurii Bohdan ◽  
Viktor Trokhaniak ◽  
Ievgen Antypov

Shall-and-tube heat exchangers based on the bundles with in-line or staggered arrangements have been widely used in industry and power engineering. A large number of theoretical and experimental works are devoted to study of hydrodynamic and heat transfer processes in such bundles. In that, works the basic studies of heat and mass transfer for these bundles are found. However, heat exchangers of this type can have big dimensions and mass. One of the ways to improve the weight and dimensions of the shell-and-tube heat exchangers is to use compact arrangement of tube bundles. A new design of heat exchanger is proposed, in which there are no gaps between adjacent tubes that touch each other. Different geometry of these tube bundles with displacement of adjacent tubes in the direction of transverse to the flow is considered. Numerical modelling and experimental investigations of hydrodynamic, heat and mass transfer processes in such tube bundles has been carried out. The distribution of velocities, temperatures, and pressure in inter-tube channels have been obtained.


Sign in / Sign up

Export Citation Format

Share Document