Influence of Host Plant Genotype, Presence of a Pathogen, and Coinoculation with Pseudomonas fluorescens Strains on the Rhizosphere Expression of Hydrogen Cyanide- and 2,4-Diacetylphloroglucinol Biosynthetic Genes in P. fluorescens Biocontrol Strain CHA0

2008 ◽  
Vol 57 (2) ◽  
pp. 267-275 ◽  
Author(s):  
Fatemeh Jamali ◽  
Abbas Sharifi-Tehrani ◽  
Matthias P. Lutz ◽  
Monika Maurhofer
Oecologia ◽  
2011 ◽  
Vol 168 (2) ◽  
pp. 483-489 ◽  
Author(s):  
Luke M. Evans ◽  
James S. Clark ◽  
Amy V. Whipple ◽  
Thomas G. Whitham
Keyword(s):  

Ecology ◽  
2000 ◽  
Vol 81 (6) ◽  
pp. 1565-1576 ◽  
Author(s):  
Nora Underwood ◽  
Mark D. Rausher

2003 ◽  
Vol 69 (1) ◽  
pp. 686-690 ◽  
Author(s):  
Fabio Rezzonico ◽  
Yvan Moënne-Loccoz ◽  
Geneviève Défago

ABSTRACT A quantitative competitive PCR (QC-PCR) assay targeting the phlA gene of Pseudomonas fluorescens CHA0 was developed and tested in vitro. Statistically significant, positive correlations were found between QC-PCR and both CFU and total cell number when studying cells in log or stationary phase. The correlations disappeared when considering stressed cells.


2005 ◽  
Vol 71 (9) ◽  
pp. 5197-5207 ◽  
Author(s):  
Annabel H. A. Parret ◽  
Koen Temmerman ◽  
René De Mot

ABSTRACT Bacteriocin LlpA, produced by Pseudomonas sp. strain BW11M1, is a peculiar antibacterial protein due to its homology to mannose-binding lectins mostly found in monocots (A. H. A. Parret, G. Schoofs, P. Proost, and R. De Mot, J. Bacteriol. 185:897-908, 2003). Biocontrol strain Pseudomonas fluorescens Pf-5 contains two llpA-like genes, named llpA1 Pf-5 and llpA2 Pf-5. Recombinant Escherichia coli cells expressing llpA1 Pf-5 or llpA2 Pf-5 acquired bacteriocin activity and secreted a 31-kDa protein cross-reacting with LlpABW11M1 antibodies. Antibacterial activity of the recombinant proteins was evidenced by gel overlay assays. Analysis of the antimicrobial spectrum indicated that LlpA1Pf-5 and LlpA2Pf-5 are able to inhibit P. fluorescens strains, as well as the related mushroom pathogen Pseudomonas tolaasii. LlpA-type bacteriocins are characterized by a domain structure consisting of tandem monocot mannose-binding lectin (MMBL) domains. Molecular phylogeny of these MMBL domains suggests that the individual MMBL domains within an LlpA protein have evolved separately toward a specific, as yet unknown, function or, alternatively, were acquired from different ancestral sources. Our observations are consistent with earlier observations, which hinted that MMBL-like bacteriocins represent a new family of antibacterial proteins, probably with a novel mode of action.


2011 ◽  
Vol 36 (4) ◽  
pp. 442-449 ◽  
Author(s):  
JOHAN A. STENBERG ◽  
ANNA LEHRMAN ◽  
CHRISTER BJÖRKMAN

2012 ◽  
Vol 25 (6) ◽  
pp. 765-778 ◽  
Author(s):  
David J. Weston ◽  
Dale A. Pelletier ◽  
Jennifer L. Morrell-Falvey ◽  
Timothy J. Tschaplinski ◽  
Sara S. Jawdy ◽  
...  

Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root–microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.


Sign in / Sign up

Export Citation Format

Share Document