binding lectin
Recently Published Documents


TOTAL DOCUMENTS

2516
(FIVE YEARS 223)

H-INDEX

103
(FIVE YEARS 7)

2022 ◽  
Vol 18 (1) ◽  
pp. e1010226
Author(s):  
Carolina De Marco Verissimo ◽  
Heather L. Jewhurst ◽  
József Dobó ◽  
Péter Gál ◽  
John P. Dalton ◽  
...  

The complement system is a first-line innate host immune defence against invading pathogens. It is activated via three pathways, termed Classical, Lectin and Alternative, which are mediated by antibodies, carbohydrate arrays or microbial liposaccharides, respectively. The three complement pathways converge in the formation of C3-convertase followed by the assembly of a lethal pore-like structure, the membrane attack complex (MAC), on the pathogen surface. We found that the infectious stage of the helminth parasite Fasciola hepatica, the newly excysted juvenile (NEJ), is resistant to the damaging effects of complement. Despite being coated with mannosylated proteins, the main initiator of the Lectin pathway, the mannose binding lectin (MBL), does not bind to the surface of live NEJ. In addition, we found that recombinantly expressed serine protease inhibitors secreted by NEJ (rFhSrp1 and rFhSrp2) selectively prevent activation of the complement via the Lectin pathway. Our experiments demonstrate that rFhSrp1 and rFhSrp2 inhibit native and recombinant MBL-associated serine proteases (MASPs), impairing the primary step that mediates C3b and C4b deposition on the NEJ surface. Indeed, immunofluorescence studies show that MBL, C3b, C4b or MAC are not deposited on the surface of NEJ incubated in normal human serum. Taken together, our findings uncover new means by which a helminth parasite prevents the activation of the Lectin complement pathway to become refractory to killing via this host response, in spite of presenting an assortment of glycans on their surface.


Cell Reports ◽  
2022 ◽  
Vol 38 (2) ◽  
pp. 110217
Author(s):  
Benjamin J. Read ◽  
Lori Won ◽  
John C. Kraft ◽  
Isaac Sappington ◽  
Aereas Aung ◽  
...  

Biochimie ◽  
2021 ◽  
Author(s):  
Jefferson Hollanda Véras ◽  
Clever Gomes Cardoso ◽  
Sara Cristina Puga ◽  
Abel Vieira de Melo Bisneto ◽  
Renato Rodrigues Roma ◽  
...  

Author(s):  
Messias V. Oliveira ◽  
Vinicius J.S. Osterne ◽  
Claudia F. Lossio ◽  
Sonia Serna ◽  
Niels C. Reichardt ◽  
...  

Author(s):  
Farzana Begum Liakath ◽  
Savitha Varatharajan ◽  
Prasanna Samuel Premkumar ◽  
Chanduni Syed ◽  
Honorine Ward ◽  
...  

In low-resource settings, Cryptosporidium spp. is a common cause of diarrheal disease in children under age 3 years. In addition to diarrhea, these children also experience subclinical episodes that have been shown to affect growth and cognitive function. In this study, we screened polymorphisms in the promoter and exon1 regions of the mannose binding lectin 2 (MBL2) gene, as well as single nucleotide polymorphisms (SNPs) described in toll-like receptors (TLR) TLR1, TLR2, TLR4, and TLR9 and TIR domain-containing adaptor protein (TIRAP) genes among children with cryptosporidial diarrhea (cases) and children who only experienced asymptomatic (subclinical) cryptosporidiosis (controls). Among the polymorphisms screened, the variant allele B at codon 54 (rs1800450) of the MBL2 gene was associated with susceptibility to cryptosporidial diarrhea (odds ratio [OR] = 2.2, 95% confidence interval [CI] 1.1–4.5). When plasma MBL levels were compared, 72% of cases were found to be deficient compared with 32% among controls (OR = 5.09). Among TLR polymorphisms screened, multivariate analysis showed that heterozygous genotypes of TLR4 896A/G (rs4986790, OR = 0.33, 95% CI: 0.11–0.98) and TIRAP 539 C/T (rs8177374, OR = 0.19, 95% CI: 0.06–0.64) SNPs were associated with protection from cryptosporidial diarrhea. Although not statistically significant, these findings suggest that polymorphisms of MBL2 and TLR genes influence susceptibility to symptomatic cryptosporidial diarrhea even in settings with high exposure levels. Further studies to validate these findings in a larger cohort and to understand the role of these polymorphisms in mediating innate and adaptive immune responses to cryptosporidial infection are necessary.


Sign in / Sign up

Export Citation Format

Share Document