Mathematical model of the ventricular action potential and effects of isoproterenol-induced cardiac hypertrophy in rats

2020 ◽  
Vol 49 (5) ◽  
pp. 323-342
Author(s):  
Sevgi Şengül Ayan ◽  
Ahmet K. Sırcan ◽  
Mohamedou Abewa ◽  
Ahmet Kurt ◽  
Uğur Dalaman ◽  
...  
2014 ◽  
Vol 307 (2) ◽  
pp. H199-H206 ◽  
Author(s):  
Hirofumi Mitsuyama ◽  
Hisashi Yokoshiki ◽  
Masaya Watanabe ◽  
Kazuya Mizukami ◽  
Junichi Shimokawa ◽  
...  

Action potential duration alternans (APD-ALT), defined as long-short-long repetitive pattern of APD, potentially leads to lethal ventricular arrhythmia. However, the mechanisms of APD-ALT in the arrhythmogenesis of cardiac hypertrophy remain undetermined. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to modulate the function of cardiac sarcoplasmic reticulum and play an important role in Ca2+ cycling. We thus aimed to determine the role of CaMKII in the increased susceptibility to APD-ALT and arrhythmogenesis in the hypertrophied heart. APD was measured by high-resolution optical mapping in left ventricular (LV) anterior wall from normotensive Wistar-Kyoto (WKY; n = 10) and spontaneously hypertensive rats (SHR; n = 10) during rapid ventricular pacing. APD-ALT was evoked at significantly lower pacing rate in SHR compared with WKY (382 ± 43 vs. 465 ± 45 beats/min, P < 0.01). These changes in APD-ALT in SHR were completely reversed by KN-93 (1 μmol/l; n = 5), an inhibitor of CaMKII, but not its inactive analog, KN-92 (1 μmol/l; n = 5). The magnitude of APD-ALT was also significantly greater in SHR than WKY and was completely normalized by KN-93. Ventricular fibrillation (VF) was induced by rapid pacing more frequently in SHR than in WKY (60 vs. 10%; P < 0.05), which was also abolished by KN-93 (0%, P < 0.05). Western blot analyses indicated that the CaMKII autophosphorylation at Thr287 was significantly increased in SHR compared with WKY. The increased susceptibility to APD-ALT and VF during rapid pacing in hypertrophied heart was prevented by KN-93. CaMKII could be an important mechanism of arrhythmogenesis in cardiac hypertrophy.


The action potential in the cells of the freshwater alga Chara corallina is slower than that in the nerve by about 1000-fold. The depolarization phase is brought on by the outflow of the Cl - ions. Voltage-clamp studies show that this Cl - current can be described by the Hodgkin-Huxley equations for the Na+ transient in the squid axon. The only change necessary to the form of the Hodgkin-Huxley equations is an introduction of a time delay between the stimulus and the onset of excitation. This mathematical model of the Chara action potential facilitates a quantitative description of the effects of pH and temperature. While a pH shift alters various Hodgkin-Huxley parameters, temperature change influences mainly the activation and inactivation time constants but leaves the voltage-dependence of these parameters unaffected. The delays in excitation are both temperature and potential dependent. In future some corrections to the Hodgkin-Huxley picture of the Chara action potential may be necessary, as recent impedance measurements suggest a change in the membrane capacitance at the time of excitation.


2003 ◽  
Vol 549 (3) ◽  
pp. 667-672 ◽  
Author(s):  
J. M. Ridley ◽  
J. T. Milnes ◽  
Y. H. Zhang ◽  
H. J. Witchel ◽  
J. C. Hancox

Sign in / Sign up

Export Citation Format

Share Document