Cl - channels in Chara

The action potential in the cells of the freshwater alga Chara corallina is slower than that in the nerve by about 1000-fold. The depolarization phase is brought on by the outflow of the Cl - ions. Voltage-clamp studies show that this Cl - current can be described by the Hodgkin-Huxley equations for the Na+ transient in the squid axon. The only change necessary to the form of the Hodgkin-Huxley equations is an introduction of a time delay between the stimulus and the onset of excitation. This mathematical model of the Chara action potential facilitates a quantitative description of the effects of pH and temperature. While a pH shift alters various Hodgkin-Huxley parameters, temperature change influences mainly the activation and inactivation time constants but leaves the voltage-dependence of these parameters unaffected. The delays in excitation are both temperature and potential dependent. In future some corrections to the Hodgkin-Huxley picture of the Chara action potential may be necessary, as recent impedance measurements suggest a change in the membrane capacitance at the time of excitation.

1968 ◽  
Vol 21 (1) ◽  
pp. 37 ◽  
Author(s):  
L Munk ◽  
E PGeorge

A mathematical model for the action potential in Purkinje fibres is developed. It is based on voltage-clamp results which show that inactivation of sodium current in these muscles is much slower than in squid axon and that the latent rise in potassium conductance is not present. Both the sodium and the potassium conductances are represented as a sum of slow and fast components. This is incorporated in the suitably adjusted Hodgkin-Huxley model for the squid axon. It is shown that such a model can account satisfactorily for the shape of the action potentials in Purkinje fibres.


1994 ◽  
Vol 21 (2) ◽  
pp. 147 ◽  
Author(s):  
TC Chilcott ◽  
HGL Coster

It has been shown that the measurement of electrical impedence can provide a non-invasive approach to detect the presence of the plasma membrane coat (PMC). Further, the measurements provide an estimate of the geometrical properties of plasmalemmasomes (charasomes) which are similar to estimates determined from electron micrographs. Impedance measurements were made in the range of 1-104 Hz. A transfer (network) function with either four or five time constants was fitted to the spectra. We present transfer functions as spectra in which peaks are observed at the reciprocal of these time constants. We call the reciprocal time constants frequency constants. Our analysis suggests that two peaks in the frequency range of 1-102 Hz arise from the series combination of the plasmalemma and tonoplast and a peak at very high frequencies (>>104 Hz) arises from the static cytoplasm. The remaining two peaks in the frequency range of 102-103 Hz we attribute to the presence of the PMC. The peak at the higher frequency we ascribe to the PMC along smooth sections of plasmalemma and that at the lower frequency we ascribe to the PMC in plasmalemmasomes (charasomes). We found that this peak was not present in spectra obtained from cells without plasmalemmasomes. Our model for the ultrastructure of the PMC and plasmalemmasomes is in good agreement with electron micrographs of these regions. Additionally, our measurements give a physiological range for the electrical properties of the PMC. Conductance and capacitance ranges are 13.6-52 S m-2 and 6.7-17 mF m-2 respectively.


1999 ◽  
Vol 277 (2) ◽  
pp. H826-H833 ◽  
Author(s):  
Seiko Tanabe ◽  
Toshio Hata ◽  
Masayasu Hiraoka

To explore a possible ionic basis for the prolonged Q-T interval in women compared with that in men, we investigated the electrophysiological effects of estrogen in isolated guinea pig ventricular myocytes. Action potentials and membrane currents were recorded using the whole cell configuration of the patch-clamp technique. Application of 17β-estradiol (10–30 μM) significantly prolonged the action potential duration (APD) at 20% (APD20) and 90% repolarization (APD90) at stimulation rates of 0.1–2.0 Hz. In the presence of 30 μM 17β-estradiol, APD20 and APD90 at 0.1 Hz were prolonged by 46.2 ± 17.1 and 63.4 ± 11.7% of the control ( n = 5), respectively. In the presence of 30 μM 17β-estradiol the peak inward Ca2+ current ( I CaL) was decreased to 80.1 ± 2.5% of the control ( n = 4) without a shift in its voltage dependence. Application of 30 μM 17β-estradiol decreased the rapidly activating component of the delayed outward K+ current ( I Kr) to 63.4 ± 8% and the slowly activating component ( I Ks) to 65.8 ± 8.7% with respect to the control; the inward rectifier K+ current was barely affected. The results suggest that 17β-estradiol prolonged APD mainly by inhibiting the I Kcomponents I Krand I Ks.


1992 ◽  
Vol 100 (4) ◽  
pp. 573-591 ◽  
Author(s):  
D N Sheppard ◽  
M J Welsh

The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl- channel that is regulated by cAMP-dependent phosphorylation and by intracellular ATP. Intracellular ATP also regulates a class of K+ channels that have a distinct pharmacology: they are inhibited by sulfonylureas and activated by a novel class of drugs called K+ channel openers. In search of modulators of CFTR Cl- channels, we examined the effect of sulfonylureas and K+ channel openers on CFTR Cl- currents in cells expressing recombinant CFTR. The sulfonylureas, tolbutamide and glibenclamide, inhibited whole-cell CFTR Cl- currents at half-maximal concentrations of approximately 150 and 20 microM, respectively. Inhibition by both agents showed little voltage dependence and developed slowly; > 90% inhibition occurred 3 min after adding 1 mM tolbutamide or 100 microM glibenclamide. The effect of tolbutamide was reversible, while that of glibenclamide was not. In contrast to their activating effect on K+ channels, the K+ channel openers, diazoxide, BRL 38227, and minoxidil sulfate inhibited CFTR Cl- currents. Half-maximal inhibition was observed at approximately 250 microM diazoxide, 50 microM BRL 38227, and 40 microM minoxidil sulfate. The rank order of potency for inhibition of CFTR Cl- currents was: glibenclamide < BRL 38227 approximately equal to minoxidil sulfate > tolbutamide > diazoxide. Site-directed mutations of CFTR in the first membrane-spanning domain and second nucleotide-binding domain did not affect glibenclamide inhibition of CFTR Cl- currents. However, when part of the R domain was deleted, glibenclamide inhibition showed significant voltage dependence. These agents, especially glibenclamide, which was the most potent, may be of value in identifying CFTR Cl- channels. They or related analogues might also prove to be of value in treating diseases such as diarrhea, which may involve increased activity of the CFTR Cl- channel.


1999 ◽  
Vol 82 (5) ◽  
pp. 2120-2129 ◽  
Author(s):  
Pascal Legendre

Electrophysiological recordings of outside-out patches to fast-flow applications of glycine were made on patches derived from the Mauthner cells of the 50-h-old zebrafish larva. As for glycinergic miniature inhibitory postsynaptic currents (mIPSCs), depolarizing the patch produced a broadening of the transient outside-out current evoked by short applications (1 ms) of a saturating concentration of glycine (3 mM). When the outside-out patch was depolarized from −50 to +20 mV, the peak current varied linearly with voltage. A 1-ms application of 3 mM glycine evoked currents that activated rapidly and deactivated biexponentially with time constants of ≈5 and ≈30 ms (holding potential of −50 mV). These two decay time constants were increased by depolarization. The fast deactivation time constant increased e-fold per 95 mV. The relative amplitude of the two decay components did not significantly vary with voltage. The fast component represented 64.2 ± 2.8% of the total current at −50 mV and 54.1 ± 10% at +20 mV. The 20–80% rise time of these responses did not show any voltage dependence, suggesting that the opening rate constant is insensitive to voltage. The 20–80% rise time was 0.2 ms at −70 mV and 0.22 ms at +20 mV. Responses evoked by 100–200 ms application of a low concentration of glycine (0.1 mM) had a biphasic rising phase reflecting the complex gating behavior of the glycine receptor. The time constant of these two components and their relative amplitude did not change with voltage, suggesting that modal shifts in the glycine-activated channel gating mode are not sensitive to the membrane potential. Using a Markov model to simulate glycine receptor gating behavior, we were able to mimic the voltage-dependent change in the deactivation time course of the responses evoked by 1-ms application of 3 mM glycine. This kinetics model incorporates voltage-dependent closing rate constants. It provides a good description of the time course of the onset of responses evoked by the application of a low concentration of glycine at all membrane potentials tested.


1987 ◽  
Vol 58 (6) ◽  
pp. 1468-1484 ◽  
Author(s):  
J. Johansen ◽  
J. Yang ◽  
A. L. Kleinhaus

1. The purely calcium-dependent action potential of the anterior lateral giant (ALG) cell in the leech Haementeria was examined under voltage clamp. 2. Analysis with ion substitutions showed that the ALG cell action potential is generated by only two time- and voltage-dependent conductance systems, an inward Ca-dependent current (ICa) and an outward Ca-dependent K current IK(Ca). 3. The kinetic properties of the inward current were examined both in Cs-loaded neurons with Ca as the current carrier as well as in Ba-containing Ringer solutions with Ba as the current carrier, since Ba effectively blocked all time- and voltage-dependent outward current. 4. During a maintained depolarization, Ba and Ca currents activated with a time constant tau m, they then inactivated with the decay following a single exponential time course with a time constant tau h. The time constants for decay of both Ba and Ca currents were comparable, suggesting that the mechanism of inactivation of ICa in the ALG cell is largely voltage dependent. In the range of potentials from 5 to 45 mV, tau m varied from 8 to 2 ms and tau h varied from 250 to 125 ms. 5. The activation of currents carried by Ba, after correction for inactivation, could be described reasonably well by the expression I'Ba = I'Ba(infinity) [1--exp(-t/tau m)]. 6. The steady-state activation of the Ba-conductance mBa(infinity) increased sigmoidally with voltage and was approximated by the equation mBa(infinity) = (1 + exp[(Vh-6)/3])-1. The steady-state inactivation hBa(infinity) varied with holding potential and could be described by the equation hBa(infinity) = [1 + exp(Vh + 10/7)]-1. Recovery from inactivation of IBa was best described by the sum of two exponential time courses with time constants of 300 ms and 1.75 s, respectively. 7. The outward current IK(Ca) developed very slowly (0.5–1 s to half-maximal amplitude) and did not inactivate during a 20-s depolarizing command pulse. Tail current decay of IK(Ca) followed a single exponential time course with voltage-dependent time constants of between 360 and 960 ms. The steady-state activation n infinity of IK(Ca) increased sigmoidally with depolarization as described by the equation n infinity = [1 + exp(Vh-13.5)/-8)]-1. 8. The reversal potentials of IK(Ca) tail currents were close to the expected equilibrium potential for potassium and they varied linearly with log [K]o with a slope of 51 mV. These results suggest a high selectivity of the conductance for K ions.(ABSTRACT TRUNCATED AT 400 WORDS)


1976 ◽  
Vol 3 (3) ◽  
pp. 275 ◽  
Author(s):  
MJ Beilby ◽  
HGJ Coster

An investigation has been made of the effect of temperature on excitation in cells of C. corallina. It was found that the duration both of the action potential and of the transient current during excitation under voltage clamp increased with decreasing temperature, from ~1 s at 40°C to ~30 s at 3.5°C. The form of the transient response, however, was independent of temperature. While the peak potential during an action potential was largely independent of temperature, the peak transient current during a voltage clamp increased with increasing temperature up to ~30°C. Beyond this temperature, the peak current decreased again with increasing temperature. The activation enthalphy (ΔH*) calculated from Arrhenius plots of the duration of the action potential or of the transient current under voltage clamp varied continuously with temperature, having the values of ~7 kJ/mol for T > 20°C and ~350 kJ/mol for T < 7°C. The peak of the transient conductance changes (during voltage clamp at -45 mV) increased progressively with increasing temperatures; for T < 7°C there was almost no transient change in conductance. °H* for peak transient conductance change was ~7 kJ/mol for T > 20°C and ~145 kJ/mol for T < 7°C. At low temperatures (<7°C), ΔH* for the excitation channels was similar to that for the dehydration of K+, Na+ or Cl- ions. At high temperatures (>35°C), ΔH* for both the passive and excitation channels was about the same as that for diffusion in a free solution. This suggests a progressive change in the degree of dehydration required for ion permeation in the channels. In the light of the known frequency dependence of the membrane capacitance of this species (at low frequencies), considerations are also given to the implications of the similarity in their temperature dependence, of the duration of the action potential and the duration of the transient currents during voltage clamps.


Author(s):  
Inbal Shani ◽  
Neima Brauner ◽  
Coleman B. Brosilow

IMC controller design for a process is based on choosing a mathematical model that describes the real process. The mathematical model describing such process is often not unique because the real variables of the process can vary within an interval. In such cases the performance of the control system varies, possibly substantially, as process parameters change. To limit such performance variations, we have developed an algorithm for choosing the model gains and the filter time constants of the IMC controller, to minimize the amount of interaction between outputs due to set point changes and disturbances for multivariable decoupled control systems. Some examples illustrate the algorithm.


Sign in / Sign up

Export Citation Format

Share Document