Alteration of the exopolysaccharide production and the transcriptional profile of free-living Frankia strain CcI3 under nitrogen-fixing conditions

2013 ◽  
Vol 97 (24) ◽  
pp. 10499-10509 ◽  
Author(s):  
Hae-In Lee ◽  
Andrew J. Donati ◽  
Dittmar Hahn ◽  
Louis S. Tisa ◽  
Woo-Suk Chang
2017 ◽  
Vol 195 ◽  
pp. 31-39 ◽  
Author(s):  
Bibha Dahal ◽  
Gitanjali NandaKafle ◽  
Lora Perkins ◽  
Volker S. Brözel

PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e106714 ◽  
Author(s):  
Huhe ◽  
Shinchilelt Borjigin ◽  
Yunxiang Cheng ◽  
Nobukiko Nomura ◽  
Toshiaki Nakajima ◽  
...  

2005 ◽  
Vol 33 (1) ◽  
pp. 157-158 ◽  
Author(s):  
L.C. Crossman

Rhizobium spp. are found in soil. They are both free-living and found symbiotically associated with the nodules of leguminous plants. Traditionally, studies have focused on the association of these organisms with plants in nitrogen-fixing nodules, since this is regarded as the most important role of these bacteria in the environment. Rhizobium sp. are known to possess several replicons. Some, like the Rhizobium etli symbiotic plasmid p42d and the plasmid pNGR234b of Rhizobium NGR234, have been sequenced and characterized. The plasmids from these organisms are the focus of this short review.


2009 ◽  
Vol 191 (19) ◽  
pp. 5890-5900 ◽  
Author(s):  
Jennifer Morris ◽  
Juan E. González

ABSTRACT The nitrogen-fixing symbiont Sinorhizobium meliloti senses and responds to constantly changing environmental conditions as it makes its way through the soil in search of its leguminous plant host, Medicago sativa (alfalfa). As a result, this bacterium regulates various aspects of its physiology in order to respond appropriately to stress, starvation, and competition. For example, exopolysaccharide production, which has been shown to play an important role in the ability of S. meliloti to successfully invade its host, also helps the bacterium withstand osmotic changes and other environmental stresses. In an effort to further elucidate the intricate regulation of this important cell component, we set out to identify genetic factors that may affect its production. Here we characterize novel genes that encode a small protein (EmmA) and a putative two-component system (EmmB-EmmC). A mutation in any of these genes leads to increased production of the symbiotically important exopolysaccharide succinoglycan. In addition, emm mutants display membrane-associated defects, are nonmotile, and are unable to form an optimal symbiosis with alfalfa, suggesting that these novel genes may play a greater role in the overall fitness of S. meliloti both during the free-living stage and in its association with its host.


Author(s):  
V.P. Soniya ◽  
P.S. Bhindhu

Background: Magnesium deficiency has become a major nutritional disorder in lateritic soils of Kerala. Appropriate magnesium fertilization is the best strategy to combat deficiency issues. Apart from correcting nutritional deficiency, magnesium fertilization has an influence on the growth of beneficial microbes such as nitrogen fixing bacterias and arbuscular mycorrhizal fungi. The experiment aimed to investigate the effect of magnesium fertilization on crop yield and population rhizosphere micoflora of cowpea in lateritic soils of Kerala.Methods: A pot culture experiment was conducted with a gradient of magnesium additions ranging from 5 mg kg-1 to 80 mg kg-1 of soil along with recommended dose of fertilizers. Population of rhizobium, free living nitrogen fixing bacteria, spore count of arbuscular mycorrhizal fungi and per cent root colonization of arbuscular mycorrhizal fungi were studied during flowering. The available magnesium and magnesium uptake were also worked out during harvest. Yield and yield contributing characteristics of cowpea were measured during harvest stage.Result: Magnesium addition produced significant variations in population of rhizobium and free- living nitrogen fixing bacteria whereas spore count of AMF and per cent root colonization of AMF did not vary according to the added doses of magnesium. A higher population of rhizobium, free living nitrogen fixers, root nodules, magnesium uptake, plant height and yield were obtained in the treatment where magnesium was applied @ 10 mg kg-1 soil.


Author(s):  
G. Mandimba ◽  
T. Heulin ◽  
R. Bally ◽  
A. Guckert ◽  
J. Balandreau

Rhizosphere ◽  
2020 ◽  
Vol 16 ◽  
pp. 100245
Author(s):  
Jésica Fernanda de Souza Gênero ◽  
Vinícius Rigueiro Messa ◽  
Meirieli Nunes Beladeli ◽  
Antônio Carlos Torres da Costa ◽  
José Barbosa Duarte Júnior

Sign in / Sign up

Export Citation Format

Share Document