Diversity of locally produced IFN-α subtypes in human nasopharyngeal epithelial cells and mouse lung tissues during influenza virus infection

2020 ◽  
Vol 104 (14) ◽  
pp. 6351-6361
Author(s):  
Lei Yang ◽  
Shengnan Wang ◽  
Ying Wang ◽  
Peiyan Zhao ◽  
Cuiyun Cui ◽  
...  
2019 ◽  
Vol 93 (20) ◽  
Author(s):  
Narae Ahn ◽  
Woo-Jong Kim ◽  
Nari Kim ◽  
Han Wook Park ◽  
Seung-Woo Lee ◽  
...  

ABSTRACT Proteoglycans function not only as structural components of the extracellular compartment but also as regulators of various cellular events, including cell migration, inflammation, and infection. Many microbial pathogens utilize proteoglycans to facilitate adhesion and invasion into host cells. Here we report a secreted form of a novel heparan sulfate proteoglycan that functions against virus infection. The expression of SPOCK2/testican-2 was significantly induced in virus-infected lungs or in interferon (IFN)-treated alveolar lung epithelial cells. Overexpression from a SPOCK2 expression plasmid alone or the treatment of cells with recombinant SPOCK2 protein efficiently blocked influenza virus infection at the step of viral attachment to the host cell and entry. Moreover, mice treated with purified SPOCK2 were protected against virus infection. Sialylated glycans and heparan sulfate chains covalently attached to the SPOCK2 core protein were critical for its antiviral activity. Neuraminidase (NA) of influenza virus cleaves the sialylated moiety of SPOCK2, thereby blocking its binding to the virus. Our data suggest that IFN-induced SPOCK2 functions as a decoy receptor to bind and block influenza virus infection, thereby restricting entry of the infecting virus into neighboring cells. IMPORTANCE Here we report a novel proteoglycan protein, testican-2/SPOCK2, that prevents influenza virus infection. Testican-2/SPOCK2 is a complex type of secreted proteoglycan with heparan sulfate GAG chains attached to the core protein. SPOCK2 expression is induced upon virus infection or by interferons, and the protein is secreted to an extracellular compartment, where it acts directly to block virus-cell attachment and entry. Treatment with purified testican-2/SPOCK2 protein can efficiently block influenza virus infection in vitro and in vivo. We also identified the heparan sulfate moiety as a key regulatory module for this inhibitory effect. Based on its mode of action (cell attachment/entry blocker) and site of action (extracellular compartment), we propose testican-2/SPOCK2 as a potential antiviral agent that can efficiently control influenza virus infection.


2015 ◽  
Vol 65 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Mihai Nita-Lazar ◽  
Aditi Banerjee ◽  
Chiguang Feng ◽  
Mohammed N. Amin ◽  
Matthew B. Frieman ◽  
...  

2010 ◽  
Vol 299 (2) ◽  
pp. L160-L168 ◽  
Author(s):  
Mutsuo Yamaya ◽  
Hidekazu Nishimura ◽  
Kyoko Shinya ◽  
Yukimasa Hatachi ◽  
Takahiko Sasaki ◽  
...  

Type A human seasonal influenza (FluA) virus infection causes exacerbations of bronchial asthma and chronic obstructive pulmonary disease (COPD). l-carbocisteine, a mucolytic agent, reduces the frequency of common colds and exacerbations in COPD. However, the inhibitory effects of l-carbocisteine on FluA virus infection are uncertain. We studied the effects of l-carbocisteine on FluA virus infection in airway epithelial cells. Human tracheal epithelial cells were pretreated with l-carbocisteine and infected with FluA virus (H3N2). Viral titers in supernatant fluids, RNA of FluA virus in the cells, and concentrations of proinflammatory cytokines in supernatant fluids, including IL-6, increased with time after infection. l-carbocisteine reduced viral titers in supernatant fluids, RNA of FluA virus in the cells, the susceptibility to FluA virus infection, and concentrations of cytokines induced by virus infection. The epithelial cells expressed sialic acid with an α2,6-linkage (SAα2,6Gal), a receptor for human influenza virus on the cells, and l-carbocisteine reduced the expression of SAα2,6Gal. l-carbocisteine reduced the number of acidic endosomes from which FluA viral RNA enters into the cytoplasm and reduced the fluorescence intensity from acidic endosomes. Furthermore, l-carbocisteine reduced NF-κB proteins including p50 and p65 in the nuclear extracts of the cells. These findings suggest that l-carbocisteine may inhibit FluA virus infection, partly through the reduced expression of the receptor for human influenza virus in the human airway epithelial cells via the inhibition of NF-κB and through increasing pH in endosomes. l-carbocisteine may reduce airway inflammation in influenza virus infection.


2006 ◽  
Vol 177 (3) ◽  
pp. 1817-1824 ◽  
Author(s):  
Susanne Herold ◽  
Werner von Wulffen ◽  
Mirko Steinmueller ◽  
Stephan Pleschka ◽  
William A. Kuziel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document