human nasal epithelial cells
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 93)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Joanna Szaleniec ◽  
Agnieszka Gibała ◽  
Joanna Stalińska ◽  
Magdalena Oćwieja ◽  
Paulina Żeliszewska ◽  
...  

Introduction: The significance of the microbiome in chronic rhinosinusitis (CRS) is not clear. Antimicrobials are recommended in acute exacerbations of the disease (AECRS). Increasing rates of antibiotic resistance stimulate research on alternative therapeutic options including silver nanoparticles (AgNPs), sometimes referred to as “colloidal silver”. However, there are concerns regarding the safety of silver administration and the emergence of silver resistance. In this cross-sectional observational study, we assessed the sensitivity of sinonasal pathogens to AgNPs and compared it with the toxicity of AgNPs for nasal epithelial cells. Method: Negatively charged AgNPs (13±5 nm) were obtained with the use of tannic acid. Minimal inhibitory concentrations (MIC) of the AgNPs were determined for pathogens isolated from patients with AECRS. Cytotoxicity was tested on human nasal epithelial cells line in vitro. Results: 48 clinical isolates and 4 reference strains were included in the study (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Acinetobacter baumanii, Serratia marcescens, Enterobacter cloacae). The MIC values differed between isolates, even within the same species. All of the strains were sensitive to AgNPs in concentrations nontoxic to human cells during 24 hours exposition. However, 48h exposition to AgNPs increased toxicity to human cells, narrowing their therapeutic window and enabling 19% of pathogens to resist the AgNPs biocidal action. Conclusions: AgNPs can potentially be used in intranasal drugs to treat most episodes of AECRS. Sensitivity testing may be necessary before application. Results of sensitivity testing for reference strains cannot be extrapolated to other strains of the same species.


Author(s):  
Kathleen Boyne ◽  
Deborah A. Corey ◽  
Pan Zhao ◽  
Binyu Lu ◽  
Walter F Boron ◽  
...  

Several aspects of the cell biology of cystic fibrosis (CF) epithelial cells are altered including impaired lipid regulation, disrupted intracellular transport, and impaired microtubule regulation. It is unclear how the loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to these differences. It is hypothesized that the loss of CFTR function leads to altered regulation of carbonic anhydrase (CA) activity resulting in cellular phenotypic changes. In this study, it is demonstrated that CA2 protein expression is reduced in CF model cells, primary mouse nasal epithelial (MNE) cells, excised MNE tissue, and primary human nasal epithelial cells (p<0.05). This corresponds to a decrease in CA2 RNA expression measured by qPCR as well as an overall reduction in CA activity in primary CF MNEs. The addition of CFTR-inhibitor-172 to WT MNE cells for ≥24 h mimics the significantly lower protein expression of CA2 in CF cells. Treatment of CF cells with L-Phenylalanine (L-Phe), an activator of CA activity, restores endosomal transport through an effect on microtubule regulation in a manner dependent on soluble adenylate cyclase (sAC). This effect can be blocked with the CA2-selective inhibitor dorzolamide. These data suggest the loss of CFTR function leads to the decreased expression of CA2 resulting in the downstream cell signaling alterations observed in CF.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Alfredo Resano ◽  
Surjyadipta Bhattacharjee ◽  
Miguel Barajas ◽  
Khanh V. Do ◽  
Roberto Aguado-Jiménez ◽  
...  

To contribute to further understanding the cellular and molecular complexities of inflammatory-immune responses in allergic disorders, we have tested the pro-homeostatic elovanoids (ELV) in human nasal epithelial cells (HNEpC) in culture challenged by several allergens. ELV are novel bioactive lipid mediators synthesized from the omega-3 very-long-chain polyunsaturated fatty acids (VLC-PUFA,n-3). We ask if: (a) several critical signaling events that sustain the integrity of the human nasal epithelium and other organ barriers are perturbed by house dust mites (HDM) and other allergens, and (b) if ELV would participate in beneficially modulating these events. HDM is a prevalent indoor allergen that frequently causes allergic respiratory diseases, including allergic rhinitis and allergic asthma, in HDM-sensitized individuals. Our study used HNEpC as an in vitro model to study the effects of ELV in counteracting HDM sensitization resulting in inflammation, endoplasmic reticulum (ER) stress, autophagy, and senescence. HNEpC were challenged with the following allergy inducers: LPS, poly(I:C), or Dermatophagoides farinae plus Dermatophagoides pteronyssinus extract (HDM) (30 µg/mL), with either phosphate-buffered saline (PBS) (vehicle) or ELVN-34 (500 nM). Results show that ELVN-34 promotes cell viability and reduces cytotoxicity upon HDM sensitization of HNEpC. This lipid mediator remarkably reduces the abundance of pro-inflammatory cytokines and chemokines IL-1β, IL-8, VEGF, IL-6, CXCL1, CCL2, and cell adhesion molecule ICAM1 and restores the levels of the pleiotropic anti-inflammatory IL-10. ELVN-34 also lessens the expression of senescence gene programming as well as of gene transcription engaged in pro-inflammatory responses. Our data also uncovered that HDM triggered the expression of key genes that drive autophagy, unfolded protein response (UPR), and matrix metalloproteinases (MMP). ELVN-34 has been shown to counteract these effects effectively. Together, our data reveal a novel, pro-homeostatic, cell-protective lipid-signaling mechanism in HNEpC as potential therapeutic targets for allergies.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Mingrong Nie ◽  
Qingxiang Zeng ◽  
Luo Xi ◽  
Yiquan Tang ◽  
Renzhong Luo ◽  
...  

Background. Airway epithelium plays an important role during the development of allergic rhinitis (AR), which is characterized by production of thymic stromal lymphopoietin (TSLP), interleukin 33 (IL-33), and interleukin 25 (IL-25). IL-35, mainly expressed by Treg cells, have negative regulation in Th2, Th17, and ILC2 inflammation. However, the effect of IL-35 on human nasal epithelial cells (HNECs) especially the secretion of nasal epithelial-derived proinflammatory cytokines as well as the possible mechanism is still unclear. Methods. HNECs were cultured and stimulated by various stimulators. The expression of IL-33, IL-25, TSLP, eotaxin-1, eotaxin-2, and eotaxin-3 from supernatant was measured using real-time reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). AR mice were developed to verify the effect of IL-35 on nasal epithelial cells in vivo. Results. After Poly I:C stimulation, IL-35 inhibited the production of IL-25, and TSLP from HNECs increased significantly compared with baseline levels ( P < 0.05 ). After Dermatophagoides pteronyssinus or Aspergillus fumigatus stimulation, IL-35 inhibited the production of IL-25, IL-33, and TSLP from HNECs increased significantly compared with baseline levels ( P < 0.05 ). After Dermatophagoides pteronyssinus, IL-35 inhibited the production of eotaxin-1, eotaxin-2, and eotaxin-3 released from HNECs increased significantly compared with baseline levels ( P < 0.05 ). Similarly, IL-35-treated AR mice presented with decreased expression of IL-33, IL-25, TSLP, eotaxin-1, eotaxin-2, and eotaxin-3 in nasal lavage fluid. Conclusion. IL-35 suppressed both type 2 inflammation-inducing cytokines and eosinophil chemotactic factor from HNECs, suggesting the important role of IL-35 during the development of AR.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ji Heui Kim ◽  
Jung Yeon Jang ◽  
Yong Ju Jang

Abstract Background Different species of human rhinovirus (HRV) can induce varied antiviral and inflammatory responses in human blood macrophages and lower airway epithelium. Although human nasal epithelial cells (HNECs) are a primary infection route of HRV, differences between major and minor groups of HRV in the upper airway epithelium have not been studied in detail. In this study, we investigated viral replications and immune responses of major and minor groups of HRV in the HNECs. Methods Viral replication, immune responses of IFN-β, IFN-λ, proinflammatory cytokines, and viral receptors, and mRNA expression of transcription factors of HRV16 (major group) and HRV1B (minor group) in the HNECs were assessed. Results Compared with HRV16, HRV1B replicated more actively without excessive cell death and produced higher IFN-β, IFN-λ1/3, CXCL10, IL-6, IL-8, and IL-18 levels. Furthermore, low-density lipoprotein receptor (LDLR), TLR3, MDA5, NF-κB, STAT1, and STAT2 mRNA levels increased in HRV1B-infected HNECs. Conclusion HRV1B induces a stronger antiviral and inflammatory response from cell entry to downstream signaling compared with HRV16.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1399
Author(s):  
José Hélio Costa ◽  
Shahid Aziz ◽  
Carlos Noceda ◽  
Birgit Arnholdt-Schmitt

Background: Early metabolic reorganization was only recently recognized as an essentially integrated part of immunology. In this context, unbalanced ROS/RNS levels connected to increased aerobic fermentation, which is linked to alpha-tubulin-based cell restructuring and control of cell cycle progression, were identified as a major complex trait for early de novo programming (‘CoV-MAC-TED’) during SARS-CoV-2 infection. This trait was highlighted as a critical target for developing early anti-viral/anti-SARS-CoV-2 strategies. To obtain this result, analyses had been performed on transcriptome data from diverse experimental cell systems. A call was released for wide data collection of the defined set of genes for transcriptome analyses, named ‘ReprogVirus’, which should be based on strictly standardized protocols and data entry from diverse virus types and variants into the ‘ReprogVirus Platform’. This platform is currently under development. However, so far, an in vitro cell system from primary target cells for virus attacks that could ideally serve for standardizing the data collection of early SARS-CoV-2 infection responses has not been defined. Results: Here, we demonstrate transcriptome-level profiles of the most critical ‘ReprogVirus’ gene sets for identifying ‘CoV-MAC-TED’ in cultured human nasal epithelial cells infected by two SARS-CoV-2 variants differing in disease severity. Our results (a) validate ‘Cov-MAC-TED’ as a crucial trait for early SARS-CoV-2 reprogramming for the tested virus variants and (b) demonstrate its relevance in cultured human nasal epithelial cells. Conclusion: In vitro-cultured human nasal epithelial cells proved to be appropriate for standardized transcriptome data collection in the ‘ReprogVirus Platform’. Thus, this cell system is highly promising to advance integrative data analyses with the help of artificial intelligence methodologies for designing anti-SARS-CoV-2 strategies.


2021 ◽  
Vol 2 ◽  
Author(s):  
Masanobu Suzuki ◽  
Clare Cooksley ◽  
Takayoshi Suzuki ◽  
Mahnaz Ramezanpour ◽  
Akira Nakazono ◽  
...  

The respiratory tract is constantly at risk of invasion by microorganisms such as bacteria, viruses, and fungi. In particular, the mucosal epithelium of the nasal cavity and paranasal sinuses is at the very forefront of the battles between the host and the invading pathogens. Recent studies have revealed that the epithelium not only constitutes a physical barrier but also takes an essential role in the activation of the immune system. One of the mechanisms equipped in the epithelium to fight against microorganisms is the Toll-like receptor (TLR) response. TLRs recognize common structural components of microorganisms and activate the innate immune system, resulting in the production of a plethora of cytokines and chemokines in the response against microbes. As the epithelia-derived cytokines are deeply involved in the pathogenesis of inflammatory conditions in the nasal cavity and paranasal sinuses, such as chronic rhinosinusitis (CRS) and allergic rhinitis (AR), the molecules involved in the TLR response may be utilized as therapeutic targets for these diseases. There are several differences in the TLR response between nasal and bronchial epithelial cells, and knowledge of the TLR signals in the upper airway is sparse compared to that in the lower airway. In this review, we provide recent evidence on TLR signaling in the upper airway, focusing on the expression, regulation, and responsiveness of TLRs in human nasal epithelial cells (HNECs). We also discuss how TLRs in the epithelium are involved in the pathogenesis of, and possible therapeutic targeting, for CRS and AR.


Sign in / Sign up

Export Citation Format

Share Document