An Investigation of 2D Spine Magnetic Resonance Imaging (MRI) with Compressed Sensing (CS)

Author(s):  
Jianxing Qiu ◽  
Jing Liu ◽  
Zhongxu Bi ◽  
Xiaowei Sun ◽  
Qingping Gu ◽  
...  
2012 ◽  
Vol 9 (3) ◽  
pp. 130-138 ◽  
Author(s):  
Ali Keshtkaran ◽  
Mohammad Bagheri ◽  
Rahim Ostovar ◽  
Hedayat Salari ◽  
Majid Reza Farrokhi ◽  
...  

Author(s):  
Nguyen Linh-Trung ◽  
Truong Minh-Chinh ◽  
Tan Tran-Duc ◽  
Ha Vu Le ◽  
Minh Ngoc Do

Fast image acquisition in magnetic resonance imaging (MRI) is important, due to the need to find ways that help relieve patient’s stress during MRI scans. Methods for fast MRI have been proposed, most notably among them are pMRI (parallel MRI), SWIFT (SWeep Imaging with Fourier Transformation), and compressed sensing (CS) based MRI. Although it promises to significantly reduce acquisition time, applying CS to MRI leads to difficulties with hardware design because of the randomness nature of the measurement matrix used by the conventional CS methods. In this paper, we propose a novel method that combines the above-mentioned three approaches for fast MRI by designing a compound measurement matrix from a series of single measurement matrices corresponding to pMRI, SWIFT, and CS. In our method, the CS measurement matrix is designed to be deterministic via chaotic systems. This chaotic compressed sensing (CCS) measurement matrix, while retaining most features of the random CS matrix, is simpler to realize in hardware. Several compound measurement matrices have been constructed and examined in this work, including CCS-MRI, CCS-pMRI, CCS-SWIFT, and CCS-pSWIFT. Simulation results showed that the proposed method allows an increase in the speed of the MRI acquisition process while not compromising the quality of the acquired MR images.


2019 ◽  
Vol 23 (04) ◽  
pp. 405-418 ◽  
Author(s):  
James F. Griffith ◽  
Radhesh Krishna Lalam

AbstractWhen it comes to examining the brachial plexus, ultrasound (US) and magnetic resonance imaging (MRI) are complementary investigations. US is well placed for screening most extraforaminal pathologies, whereas MRI is more sensitive and accurate for specific clinical indications. For example, MRI is probably the preferred technique for assessment of trauma because it enables a thorough evaluation of both the intraspinal and extraspinal elements, although US can depict extraforaminal neural injury with a high level of accuracy. Conversely, US is probably the preferred technique for examination of neurologic amyotrophy because a more extensive involvement beyond the brachial plexus is the norm, although MRI is more sensitive than US for evaluating muscle denervation associated with this entity. With this synergy in mind, this review highlights the tips for examining the brachial plexus with US and MRI.


Endoscopy ◽  
2004 ◽  
Vol 36 (10) ◽  
Author(s):  
BP McMahon ◽  
JB Frøkjær ◽  
A Bergmann ◽  
DH Liao ◽  
E Steffensen ◽  
...  

2019 ◽  
pp. 10-23
Author(s):  
T. A. Akhadov ◽  
S. Yu. Guryakov ◽  
M. V. Ublinsky

For a long time, there was a need to apply magnetic resonance imaging (MRI) technique for lung visualization in clinical practice. The development of this method is stimulated by necessity of the emergence of an alternative to computed tomography, especially when radiation and injection of iodine-containing contrast agents are contraindicated or undesirable, for example, in pregnant women and children, people with intolerance to iodinated contrast. One of the reasons why lung MRI is still rarely used is lack of elaborated standardized protocols that would be adapted to clinical needs of medical society. This publication is a current literature review on the use of MRI in lung studies.


2007 ◽  
Vol 30 (4) ◽  
pp. 41
Author(s):  
A. Dechant

On the morning of October 10, 2003, the residents of New York awoke to find that an entire page of their beloved paper, The Times, had been usurped for the sole purpose of flagrant self-promotion and protestation. On his own behalf, Dr. Raymand Damadian had purchased a one page spread bemoaning his exclusion in the Nobel Prize for Medicine that year which had previously been awarded to Paul Laterbur and Peter Mansfield for their contributions to the development of Magnetic Resonance Imaging (MRI). Over the course of the next few months, the public was to witness a series of such articles proclaiming that a shameful wrong had been committed, and that the truth would eventually prove Dr. Damadian’s accusations. That truth lay in the early theoretical and technical foundations that led to the discovery of MRI. Described just after the Second World War, nuclear magnetic resonance (NMR) was hailed as a breakthrough in physical chemistry for which Felix Bloch and Edward Purcell were awarded the Nobel Prize in Physics in 1952. Two decades later, in 1971, Dr. Damadian discovered that differences between the NMR signals of cancerous and normal tissue might provide a rapid means of cancer detection. However, Laterbur and Mansfield were the first to actually demonstrate images of live tissue using the application of magnetic gradients – the key to modern MRI. Though speculation exists that Dr. Damadian may have been excluded from the prize due to his religious beliefs or political rivalry, only time will reveal the whole truth when the Nobel files are opened 50 years hence. Bradley W. The Nobel Prize: Three Investigators Allowed but Two Were Chosen. Journal of Magnetic Resonance Imaging 2004; 19:520. Laterbur P. Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 1973; 242:190-191. Mansfield P, Grannell P. “NMR diffraction in solids?” Journal of Physics C: Solid State Physics 1973; 63:L433-L426.


Sign in / Sign up

Export Citation Format

Share Document