Differences in range of motion with the same combined anteversion after total hip arthroplasty

2017 ◽  
Vol 42 (5) ◽  
pp. 1021-1028 ◽  
Author(s):  
Takaaki Ohmori ◽  
Tamon Kabata ◽  
Yoshitomo Kajino ◽  
Tadashi Taga ◽  
Kazuhiro Hasegawa ◽  
...  
2021 ◽  
Author(s):  
Ryo Hidaka ◽  
Kenta Matsuda ◽  
Masaki Nakamura ◽  
Shigeru Nakamura ◽  
Hirotaka Kawano

Abstract Background Obtaining a larger theoretical range of motion (ROM) is crucial to avoid prosthetic impingement after total hip arthroplasty (THA); however, no reports have examined the permissible range values of combined anteversion (CA) satisfying targeted ROM without prosthetic impingement. This retrospective study aimed to evaluate the possible postoperative CA extent that would allow meeting target ROM criteria according to Yoshimine’s theory using computed tomography (CT)-based three-dimensional motion analysis after THA. Methods This study included 114 patients (133 hips) who underwent cementless primary THA using a CT-based navigation system and implants (oscillation angle ≥ 135°). Implant positions were determined using Yoshimine's CA formula. Postoperative evaluation was conducted using a three-dimensional templating software for CT data. The postoperative Yoshimine’s and Widmer’s CA was calculated, and the difference between the target and postoperative values was defined as the error of Yoshimine’s CA and Widmer’s CA. Prosthetic ROM was assessed by Yoshimine’s stringent criteria for activities of daily living. Based on fulfilling these criteria, all patients were divided into the ROM (+) and ROM (-) groups. Evaluation items were compared between the two groups. Results There were 111 and 22 hips in the ROM (+) and ROM (-) groups, respectively. A significant difference was noted in the absolute error of Yoshimine’s and Widmer’s CA between the two groups. Using receiver operating characteristic analysis, threshold values of 6.0 (higher values indicate greater disability; sensitivity 90.9%, specificity 72.1%) for the absolute Yoshimine’s CA difference (area under the curve [AUC] 0.87, P < 0.01) and 6.9 (higher values indicate greater disability; sensitivity 68.2%, specificity 88.3%) for the absolute Widmer’s CA difference (AUC 0.83, P < 0.01) were predictors in the ROM (-) group. Conclusions The target range of Yoshimine’s CA (90.8°±6.0°) and Widmer’s CA values (37.3°±6.9°) was crucial in implant orientation for obtaining theoretical ROM without prosthetic impingement after THA.


2021 ◽  
Author(s):  
Ryo hidaka ◽  
Kenta Matsuda ◽  
Masaki Nakamura ◽  
Shigeru Nakamura ◽  
Hirotaka Kawano

Abstract Background: Obtaining a larger theoretical range of motion (ROM) is crucial to avoid prosthetic impingement after total hip arthroplasty (THA); however, no reports have examined the permissible range values of combined anteversion (CA) satisfying targeted ROM without prosthetic impingement. This retrospective study aimed to evaluate the possible postoperative CA extent that would allow meeting target ROM criteria according to Yoshimine’s theory using computed tomography (CT)-based three-dimensional motion analysis after THA.Methods: This study included 114 patients (133 hips) who underwent cementless primary THA using a CT-based navigation system and implants (oscillation angle ≥135°). Implant positions were determined using Yoshimine's CA formula. Postoperative evaluation was conducted using a three-dimensional templating software for CT data. The postoperative Yoshimine’s and Widmer’s CA was calculated, and the difference between the target and postoperative values was defined as the error of Yoshimine’s CA and Widmer’s CA. Prosthetic ROM was assessed by Yoshimine’s stringent criteria for activities of daily living. Based on fulfilling these criteria, all patients were divided into the ROM (+) and ROM (-) groups. Evaluation items were compared between the two groups.Results: There were 111 and 22 hips in the ROM (+) and ROM (-) groups, respectively. A significant difference was noted in the absolute error of Yoshimine’s and Widmer’s CA between the two groups. Using receiver operating characteristic analysis, threshold values of 6.0 (higher values indicate greater disability; sensitivity 90.9%, specificity 72.1%) for the absolute Yoshimine’s CA difference (area under the curve [AUC] 0.87, P<0.01) and 6.9 (higher values indicate greater disability; sensitivity 68.2%, specificity 88.3%) for the absolute Widmer’s CA difference (AUC 0.83, P<0.01) were predictors in the ROM (-) group.Conclusions: The target range of Yoshimine’s CA (90.8°±6.0°) and Widmer’s CA values (37.3°±6.9°) was crucial in implant orientation for obtaining theoretical ROM without prosthetic impingement after THA.


2021 ◽  
Vol 2 (10) ◽  
pp. 834-841
Author(s):  
Patrick B. O'Connor ◽  
Matthew T. Thompson ◽  
Christina I. Esposito ◽  
Nikola Poli ◽  
James McGree ◽  
...  

Aims Pelvic tilt (PT) can significantly change the functional orientation of the acetabular component and may differ markedly between patients undergoing total hip arthroplasty (THA). Patients with stiff spines who have little change in PT are considered at high risk for instability following THA. Femoral component position also contributes to the limits of impingement-free range of motion (ROM), but has been less studied. Little is known about the impact of combined anteversion on risk of impingement with changing pelvic position. Methods We used a virtual hip ROM (vROM) tool to investigate whether there is an ideal functional combined anteversion for reduced risk of hip impingement. We collected PT information from functional lateral radiographs (standing and sitting) and a supine CT scan, which was then input into the vROM tool. We developed a novel vROM scoring system, considering both seated flexion and standing extension manoeuvres, to quantify whether hips had limited ROM and then correlated the vROM score to component position. Results The vast majority of THA planned with standing combined anteversion between 30° to 50° and sitting combined anteversion between 45° to 65° had a vROM score > 99%, while the majority of vROM scores less than 99% were outside of this zone. The range of PT in supine, standing, and sitting positions varied widely between patients. Patients who had little change in PT from standing to sitting positions had decreased hip vROM. Conclusion It has been shown previously that an individual’s unique spinopelvic alignment influences functional cup anteversion. But functional combined anteversion, which also considers stem position, should be used to identify an ideal THA position for impingement-free ROM. We found a functional combined anteversion zone for THA that may be used moving forward to place total hip components. Cite this article: Bone Jt Open 2021;2(10):834–841.


2020 ◽  
Vol 12 (6) ◽  
pp. 1663-1673
Author(s):  
Li Li ◽  
Yu Zhang ◽  
Yuan‐yuan Lin ◽  
Zhen‐xing Li ◽  
Liang Chen ◽  
...  

2009 ◽  
Vol 24 (4) ◽  
pp. 646-651 ◽  
Author(s):  
Akinobu Matsushita ◽  
Yasuharu Nakashima ◽  
Seiya Jingushi ◽  
Takuaki Yamamoto ◽  
Akio Kuraoka ◽  
...  

2021 ◽  
pp. 112070002110448
Author(s):  
Ryo Mitsutake ◽  
Hiromasa Tanino ◽  
Hiroshi Ito

Background: Dislocation continues to be a common complication following total hip arthroplasty (THA). Although previous studies of computed simulation analysis investigated the range of motion (ROM), it is unclear whether the ROM before impingement simulated using computed tomography-based 3-dimensional simulation analysis (simulated ROM) is related to dislocation after THA. It is also unclear what angles are required in computed simulation analyses for stable hips after THA. In this study, we compared the simulated ROM in patients with and without dislocation. Methods: 16 patients with posterior dislocation were compared with 48 matched patients without dislocation. Risk factors including preoperative bone morphology of the hip, implant position, change of femoral offset, change of leg length, anterior aspect of the greater trochanter (GTa) length, and anterior inferior iliac spine length were also compared. Results: The mean flexion angle, internal-rotation at 90° flexion (IR) angle, cup anteversion based on the anterior pelvic plane (APP), tilt-adjusted cup anteversion and GTa length were significantly different between patients with dislocation and patients without dislocation ( p = 0.033, 0.002, 0.010, 0.047, 0.046). A receiver-operating characteristic curve analysis suggested cutoff points for flexion angle, IR angle, cup anteversion based on the APP, tilt-adjusted cup anteversion and GTa length, of 114.5°, 45.5°, 19.5°, 12.0° and 15.3 mm. Conclusions: This study suggests that preoperative planning to achieve a larger simulated ROM, flexion angle and IR angle, may reduce the risk of posterior dislocation. This study also suggests that fine-tuning of cup anteversion and/or trimming of the overhanging GTa during preoperative planning may reduce the risk of posterior dislocation.


2020 ◽  
Vol 6 (4) ◽  
pp. 651-654
Author(s):  
J. Benjamin Jackson ◽  
J. Ryan Martin ◽  
Aric Christal ◽  
John L. Masonis ◽  
Bryan D. Springer ◽  
...  

2013 ◽  
Vol 37 (7) ◽  
pp. 1233-1237 ◽  
Author(s):  
Shinya Hayashi ◽  
Takayuki Nishiyama ◽  
Takaaki Fujishiro ◽  
Shingo Hashimoto ◽  
Noriyuki Kanzaki ◽  
...  

2016 ◽  
Vol 136 (7) ◽  
pp. 1015-1020 ◽  
Author(s):  
Michael Woerner ◽  
Markus Weber ◽  
Ernst Sendtner ◽  
Robert Springorum ◽  
Michael Worlicek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document