Application of a Three-Dimensional Water Quality Model as a Decision Support Tool for the Management of Land-Use Changes in the Catchment of an Oligotrophic Lake

2014 ◽  
Vol 54 (3) ◽  
pp. 479-493 ◽  
Author(s):  
Dennis Trolle ◽  
Bob Spigel ◽  
David P. Hamilton ◽  
Ned Norton ◽  
Donna Sutherland ◽  
...  
2015 ◽  
Vol 15 (5) ◽  
pp. 1011-1018 ◽  
Author(s):  
Jonas Kjeld Kirstein ◽  
Hans-Jørgen Albrechtsen ◽  
Martin Rygaard

Topological clustering was explored as a tool for water supply utilities in preparation of monitoring and contamination contingency plans. A complex water distribution network model of Copenhagen, Denmark, was simplified by topological clustering into recognizable water movement patterns to: (1) identify steady clusters for a part of the network where an actual contamination has occurred; (2) analyze this event by the use of mesh diagrams; and (3) analyze the use of mesh diagrams as a decision support tool for planning water quality monitoring. Initially, the network model was divided into strongly and weakly connected clusters for selected time periods and mesh diagrams were used for analysing cluster connections in the Nørrebro district. Here, areas of particular interest for water quality monitoring were identified by including user-information about consumption rates and consumers particular sensitive towards water quality deterioration. The analysis revealed sampling locations within steady clusters, which increased samples' comparability over time. Furthermore, the method provided a simplified overview of water movement in complex distribution networks, and could assist identification of potential contamination and affected consumers in contamination cases. Although still in development, the method shows potential for assisting utilities during planning of monitoring programs and as decision support tool during emergency contingency situations.


FACETS ◽  
2021 ◽  
Vol 6 ◽  
pp. 1570-1600
Author(s):  
Jérôme Cimon-Morin ◽  
Jean-Olivier Goyette ◽  
Poliana Mendes ◽  
Stéphanie Pellerin ◽  
Monique Poulin

Balancing human well-being with the maintenance of ecosystem services (ES) for future generations has become one of the central sustainability challenges of the 21st century. In working landscapes, past and ongoing production-centered objectives have resulted in the conversion of ecosystems into simple land-use types, which has also altered the provision of most ES. These inevitable trade-offs between the efficient production of individual provisioning ES and the maintenance of regulating and cultural ES call for the development of a land-use strategy based on the multifunctional use of the landscape. Due to the heterogeneous nature of working landscapes, both protection and restoration actions are needed to improve their multifunctionality. Systematic conservation planning (SCP) offers a decision support framework that can support landscape multifunctionality by indicating where ES management efforts should be implemented. We describe an approach that we developed to include ES provision protection and restoration objectives in SCP with the goal of providing ongoing benefits to society. We explain the general framework of this approach and discuss concepts, challenges, innovations, and prospects for the further development of a comprehensive decision support tool. We illustrate our approach with two case studies implemented in the pan-Canadian project ResNet.


2021 ◽  
Author(s):  
Alex Rigby ◽  
Sopan Patil ◽  
Panagiotis Ritsos

<p>Land Use Land Cover (LULC) change is widely recognised as one of the most important factors impacting river basin hydrology.  It is therefore imperative that the hydrological impacts of various LULC changes are considered for effective flood management strategies and future infrastructure decisions within a catchment.  The Soil and Water assessment Tool (SWAT) has been used extensively to assess the hydrological impacts of LULC change.  Areas with assumed homogeneous hydrologic properties, based on their LULC, soil type and slope, make up the basic computational units of SWAT known as the Hydrologic Response Units (HRUs).  LULC changes in a catchment are typically modelled by SWAT through alterations to the input files that define the properties of these HRUs.  However, to our knowledge at least, the process of making such changes to the SWAT input files is often cumbersome and non-intuitive.  This affects the useability of SWAT as a decision support tool amongst a wider pool of applied users (e.g., engineering teams in environmental regulatory agencies and local authorities).  In this study, we seek to address this issue by developing a user-friendly toolkit that will: (1) allow the end user to specify, through a Graphical User Interface (GUI), various types of LULC changes at multiple locations within their study catchment, (2) run the SWAT+ model (the latest version of SWAT) with the specified LULC changes, and (3) enable interactive visualisation of the different SWAT+ output variables to quantify the hydrological impacts of these scenarios.  Importantly, our toolkit does not require the end user to have any operational knowledge of the SWAT+ model to use it as a decision support tool.  Our toolkit will be trialled at 15 catchments in Gwynedd county, Wales, which has experienced multiple occurrences of high flood events, and consequent economic damage, in the recent past.  We anticipate this toolkit to be a valuable addition to the decision-making processes of Gwynedd County Council for the planning and development of future flood alleviation schemes as well as other infrastructure projects.</p>


Sign in / Sign up

Export Citation Format

Share Document