scholarly journals Effectiveness of the clinical decision support tool ESR eGUIDE for teaching medical students the appropriate selection of imaging tests: randomized cross-over evaluation

2020 ◽  
Vol 30 (10) ◽  
pp. 5684-5689 ◽  
Author(s):  
Torsten Diekhoff ◽  
Franz Kainberger ◽  
Laura Oleaga ◽  
Marc Dewey ◽  
Elke Zimmermann

Abstract Objectives To evaluate ESR eGUIDE—the European Society of Radiology (ESR) e-Learning tool for appropriate use of diagnostic imaging modalities—for learning purposes in different clinical scenarios. Methods This anonymized evaluation was performed after approval of ESR Education on Demand leadership. Forty clinical scenarios were developed in which at least one imaging modality was clinically most appropriate, and the scenarios were divided into sets 1 and 2. These sets were provided to medical students randomly assigned to group A or B to select the most appropriate imaging test for each scenario. Statistical comparisons were made within and across groups. Results Overall, 40 medical students participated, and 31 medical students (78%) answered both sets. The number of correctly chosen imaging methods per set in these 31 paired samples was significantly higher when answered with versus without use of ESR eGUIDE (13.7 ± 2.6 questions vs. 12.1 ± 3.2, p = 0.012). Among the students in group A, who first answered set 1 without ESR eGUIDE (11.1 ± 3.2), there was significant improvement when set 2 was answered with ESR eGUIDE (14.3 ± 2.5, p = 0.013). The number of correct answers in group B did not drop when set 2 was answered without ESR eGUIDE (12.4 ± 2.6) after having answered set 1 first with ESR eGUIDE (13.0 ± 2.7, p = 0.66). Conclusion The clinical decision support tool ESR eGUIDE is suitable for training medical students in choosing the best radiological imaging modality in typical scenarios, and its use in teaching radiology can thus be recommended. Key Points • ESR eGUIDE improved the number of appropriately selected imaging modalities among medical students. • This improvement was also seen in the group of students which first selected imaging tests without ESR eGUIDE. • In the student group which used ESR eGUIDE first, appropriate selection remained stable even without the teaching tool.

Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 100488
Author(s):  
Rachel Gold ◽  
Mary Middendorf ◽  
John Heintzman ◽  
Joan Nelson ◽  
Patrick O'Connor ◽  
...  

2014 ◽  
Vol 141 (5) ◽  
pp. 718-723 ◽  
Author(s):  
Gary W. Procop ◽  
Lisa M. Yerian ◽  
Robert Wyllie ◽  
A. Marc Harrison ◽  
Kandice Kottke-Marchant

2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S31-S31
Author(s):  
Sena Veazey ◽  
Maria SerioMelvin ◽  
David E Luellen ◽  
Angela Samosorn ◽  
Alexandria Helms ◽  
...  

Abstract Introduction In disaster or mass casualty situations, access to remote burn care experts, communication, or resources may be limited. Furthermore, burn injuries are complex and require substantial training and knowledge beyond basic clinical care. Development and use of decision support (DS) technologies may provide a solution for addressing this need. Devices capable of delivering burn management recommendations can enhance the provider’s ability to make decisions and perform interventions in complex care settings. When coupled with merging augmented reality (AR) technologies these tools may provide additional capabilities to enhance medical decision-making, visualization, and workflow when managing burns. For this project, we developed a novel AR-based application with enhanced integrated clinical practice guidelines (CPGs) to manage large burn injuries for use in different environments, such as disasters. Methods We identified an AR system that met our requirements to include portability, infrared camera, gesture and voice control, hands-free control, head-mounted display, and customized application development abilities. Our goal was to adapt burn CPGs to make use of AR concepts as part of an AR-enabled burn clinical decision support system supporting four sub-applications to assist users with specific interventional tasks relevant to burn care. We integrated relevant CPGs and a media library with photos and videos as additional references. Results We successfully developed a clinical decision support tool that integrates burn CPGs with enhanced capabilities utilizing AR technology. The main interface allows input of patient demographics and injuries with step-by-step guidelines that follow typical burn management care and workflow. There are four sub-applications to assist with these tasks, which include: 1) semi-automated burn wound mapping to calculate total body surface area; 2) hourly burn fluid titration and recommendations for resuscitation; 3) medication calculator for accurate dosing in preparation for procedures and 4) escharotomy instructor with holographic overlays. Conclusions We developed a novel AR-based clinical decision support tool for management of burn injuries. Development included adaptation of CPGs into a format to guide the user through burn management using AR concepts. The application will be tested in a prospective research study to determine the effectiveness, timeliness, and performance of subjects using this AR-software compared to standard of care. We fully expect that the tool will reduce cognitive workload and errors, ensuring safety and proper adherence to guidelines.


2004 ◽  
Vol 38 (6) ◽  
pp. 628-637 ◽  
Author(s):  
Janice M Johnston ◽  
Gabriel M Leung ◽  
Keith Y K Tin ◽  
Lai-Ming Ho ◽  
Wendy Lam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document