scholarly journals On Strong Continuity of Weak Solutions to the Compressible Euler System

2021 ◽  
Vol 31 (2) ◽  
Author(s):  
Anna Abbatiello ◽  
Eduard Feireisl
Author(s):  
Eduard Feireisl ◽  
Christian Klingenberg ◽  
Simon Markfelder

Abstract We consider a class of “wild” initial data to the compressible Euler system that give rise to infinitely many admissible weak solutions via the method of convex integration. We identify the closure of this class in the natural $$L^1$$ L 1 -topology and show that its complement is rather large, specifically it is an open dense set.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Wenming Hu

In the present paper, we study the blowup of the solutions to the full compressible Euler system and pressureless Euler-Poisson system with time-dependent damping. By some delicate analysis, some Riccati-type equations are achieved, and then, the finite time blowup results can be derived.


2010 ◽  
Vol 138 (12) ◽  
pp. 4475-4496 ◽  
Author(s):  
Michael Baldauf

Abstract For atmospheric simulation models with resolutions from about 10 km to the subkilometer cloud-resolving scale, the complete nonhydrostatic compressible Euler equations are often used. An important integration technique for them is the time-splitting (or split explicit) method. This article presents a comprehensive numerical stability analysis of Runge–Kutta (RK)-based partial time-splitting schemes. To this purpose a linearized two-dimensional (2D) compressible Euler system containing advection (as the slow process), sound, and gravity wave terms (as fast processes) is considered. These processes are the most important ones in limiting stability. First, the detailed stability properties are discussed with regard to several off-centering weights for each fast process described by horizontally explicit, vertically implicit schemes. Then the stability properties of the temporally and spatially discretized three-stage RK scheme for the complete 2D Euler equations and their stabilization (e.g., by divergence damping) are discussed. The main goal is to find optimal values for all of the occurring numerical parameters to guarantee stability in operational model applications. Furthermore, formal orders of temporal truncation errors for the time-splitting schemes are calculated. With the same methodology, two alternatives to the three-stage RK method, a so-called RK3-TVD method, and a new four-stage, second-order RK method are inspected.


2018 ◽  
Vol 59 (12) ◽  
pp. 121507 ◽  
Author(s):  
Helge Kristian Jenssen ◽  
Charis Tsikkou

2015 ◽  
Vol 12 (03) ◽  
pp. 489-499 ◽  
Author(s):  
Eduard Feireisl ◽  
Ondřej Kreml

We show that 1D rarefaction wave solutions are unique in the class of bounded entropy solutions to the multidimensional compressible Euler system. Such a result may be viewed as a counterpart of the recent examples of non-uniqueness of the shock wave solutions to the Riemann problem, where infinitely many solutions are constructed by the method of convex integration.


2021 ◽  
Vol 18 (01) ◽  
pp. 169-193
Author(s):  
Xavier Blanc ◽  
Raphaël Danchin ◽  
Bernard Ducomet ◽  
Šárka Nečasová

We consider the Cauchy problem for the barotropic Euler system coupled to Helmholtz or Poisson equations, in the whole space. We assume that the initial density is small enough, and that the initial velocity is close to some reference vector field [Formula: see text] such that the spectrum of [Formula: see text] is positive and bounded away from zero. We prove the existence of a global unique solution with (fractional) Sobolev regularity, and algebraic time decay estimates. Our work extends Grassin and Serre’s papers [Existence de solutions globales et régulières aux équations d’Euler pour un gaz parfait isentropique, C. R. Acad. Sci. Paris Sér. I 325 (1997) 721–726, 1997; Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J. 47 (1998) 1397–1432; Solutions classiques globales des équations d’Euler pour un fluide parfait compressible, Ann. Inst. Fourier Grenoble 47 (1997) 139–159] dedicated to the compressible Euler system without coupling and with integer regularity exponents.


Sign in / Sign up

Export Citation Format

Share Document