A new method for the estimation of fine-sediment resuspension ratios in estuaries—taking the turbidity maximum zone of the Changjiang (Yangtze) estuary as an example

2012 ◽  
Vol 30 (5) ◽  
pp. 791-795 ◽  
Author(s):  
Zhiliang Shen
2020 ◽  
Author(s):  
Ping Dong ◽  
Huabin Shi

<p>The Yangtze estuary is characterized by its extremely high suspended sediment concentration (SSC) and the extensive turbidity maximum zone (TMZ). The estuary is physically forced by an upstream river discharge seasonally varying in a wide range of 6000 – 92000 m3/s and semidiurnal-diurnal mixed tides with the tidal range up to 5 m. The influences of the seasonal and interannual variations in the upstream river discharge and the tidal asymmetry on the location of the Yangtze TMZ are numerically investigated with a two-dimensional depth-averaged model. Sensitivities of SSC and hence the location of TMZ to the bottom shear stress, bed erodibility, and the sediment settling velocity are studied. The spatial and temporal evolutions of the TMZ position in the cases of various upstream river discharges with different monthly, seasonal and interannual variations are simulated and discussed. The effects of the M2/M4-induce tidal asymmetry on the TMZ position and those of the interactions between the eight main astronomical tides (M2, S2, N2, K2, K1, O1, P1, and Q1) are compared. It is shown that the M2/M4-induce tidal asymmetry plays a critical role in the formulation of TMZ in the downstream of the South Branch of Yangtze estuary, while the interactions between the eight main astronomical tides have more significant effects on the TMZ location in other areas of Yangtze estuary such as the South and the North Passages.</p>


2021 ◽  
pp. 106569
Author(s):  
Teng Lizhi ◽  
Cheng Heqin ◽  
Huib E. de Swart ◽  
Ping Dong ◽  
Li Zhanhai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document