tidal asymmetry
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 19)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 9 (12) ◽  
pp. 1393
Author(s):  
Cuiping Kuang ◽  
Xin Cong ◽  
Zhichao Dong ◽  
Qingping Zou ◽  
Huaming Zhan ◽  
...  

The long-term geomorphological evolution of a coastal lagoon is driven by hydrodynamic forcing and is influenced by climate changes and human activities. In this study, a numerical model of the Qilihai lagoon (QL) system was established based on field measurements, previous hydrology data and satellite remote sensing measurements, to simulate the geomorphological evolution of QL from 1900 to 2018. The influences of sea level rise, runoff and human activities on the evolution of geomorphology were investigated. The results of the model show that the construction projects including the tide gate, the bridge, reclamation and the straightening or widening of the tidal channel increased the net deposition within the QL system. Furthermore, the spatial distribution of tidal asymmetry during the natural time period was similar to that of the change in bed thickness. However, bed erosion or deposition was not only dependent on tidal asymmetry but it was also affected by the external sediment supply and the discharge of upstream rivers. Moreover, sea level rise had a significant effect on the tidal asymmetry; therefore, it enhanced the accumulation of sediments in the QL system, while runoff had little effect on the tidal asymmetry or geomorphological changes in the system.


Author(s):  
G. Herrling ◽  
M. Becker ◽  
A. Lefebvre ◽  
A. Zorndt ◽  
K. Krämer ◽  
...  

2021 ◽  
Author(s):  
Wei Zhang ◽  
Shiyu Bao

<p>Tidal asymmetry in deltas is caused by both the intrinsic asymmetry, resulting from the combination of astronomical tides, and by nonlinear tidal interactions that occur in shallow water. In recent years, nonlinear tidal interactions in deltas have become more complex due to the influence of topographic changes. The relative importance of these sources of tidal asymmetry in delta channel networks, partially due to the limitations of classical harmonic analysis (HA) in hindcasting nonstationary tides, has remained poorly studied. We take the Pearl River Delta (PRD) as an example to examine the spatial-temporal variations of tides and tidal asymmetry in deltas. For hydrological data from 14 stations in the PRD spanning the period1961-2012, the non-stationary harmonic analysis method (NS-TIDE) is used. The spatiotemporal variation of multiple sources of tidal asymmetry is quantified by a skewness metric, revealing the development of alternative sources of tidal asymmetry develop in the delta subject to study. As tides propagate into delta channel networks, analytical results show the development of tides becoming increasingly more asymmetric. In the course of the 1990s and 2000s, tidal skewness has decreased in the parts of the PRD where the water depth varies greatly, indicating that the tidal asymmetry has reduced. Our findings demonstrate that deepening of the channel system is associated with a reduction of the flood-dominant tidal asymmetry. Deeper channels tend to be more often ebb-dominant than shallow areas. Due to extensive sand excavation, the abrupt changes in bathymetry in the delta are likely to be responsible for the observed spatial variations in tidal response that reduce the flood-dominant tidal asymmetry in this region.</p>


2020 ◽  
Author(s):  
Vera Fofonova ◽  
Alexey Androsov ◽  
Lasse Sander ◽  
Ivan Kuznetsov ◽  
Felipe Amorim ◽  
...  

<p> </p><p>The study is dedicated to the tidal dynamics in the Sylt-Rømø Bight with a focus on the non-linear processes. The FESOM-C model was used as the numerical tool, which works with triangular, rectangular or mixed grids and is equipped with a wetting/drying option. As the model’s success at resolving currents largely depends on the quality of the bathymetric data, we have created a new bathymetric map for an area based on recent studies of Lister Deep, Lister Ley, and the Højer and Rømø Deep areas. This new bathymetric product made it feasible to work with high resolution grids (up to 2 m in the wetting/drying zone). As a result, we were able to study the tidal energy transformation and the role of higher harmonics in the domain in detail. The tidal ellipses, maximum tidally-induced velocities, energy fluxes and residual circulation maps were constructed and analysed for the entire bight. Additionally, tidal asymmetry maps were introduced and constructed. The full analysis was performed on two grids with different structures and showed a convergence of the results as well as fulfillment of the energy balance. The tidal residual circulation and asymmetric tidal cycles largely define the circulation pattern, transport and accumulation of sediment and the distribution of bedforms in the bight, therefore the results are necessary and useful benchmarks for further studies in the area, including baroclinic and sediment dynamics investigations.</p>


2020 ◽  
Author(s):  
Guo Wenyun ◽  
Song Dehai ◽  
Guo Leicheng ◽  
Ge Jianzhong ◽  
Ding Pingxing ◽  
...  

<p>Tides always behaves different rising and falling durations, which can mostly attribute to the shallow-water effect and interactions among tidal constituents. The duration asymmetry may lead to an inequality in flood/ebb tidal current magnitudes, affecting the net sediment transport. Tidal duration asymmetry has time-dependent characteristics. We deducted a general framework for identifying the time-variability in tidal duration asymmetry. The application to the global tides showed that the fortnightly variability in tidal asymmetry is universal and that duration asymmetry can be stronger during neap tide than during spring tide. Then the framework is applied to the tides in the Changjiang Estuary. Prominent seasonal variation in tidal asymmetry is revealed, mainly relate to the river-tide interaction. Application to the tides in the Yangshan Harbor sea area revealed that the local-scale tidal asymmetry can be changed strongly by a large coastal engineering.</p>


2020 ◽  
Author(s):  
Ping Dong ◽  
Huabin Shi

<p>The Yangtze estuary is characterized by its extremely high suspended sediment concentration (SSC) and the extensive turbidity maximum zone (TMZ). The estuary is physically forced by an upstream river discharge seasonally varying in a wide range of 6000 – 92000 m3/s and semidiurnal-diurnal mixed tides with the tidal range up to 5 m. The influences of the seasonal and interannual variations in the upstream river discharge and the tidal asymmetry on the location of the Yangtze TMZ are numerically investigated with a two-dimensional depth-averaged model. Sensitivities of SSC and hence the location of TMZ to the bottom shear stress, bed erodibility, and the sediment settling velocity are studied. The spatial and temporal evolutions of the TMZ position in the cases of various upstream river discharges with different monthly, seasonal and interannual variations are simulated and discussed. The effects of the M2/M4-induce tidal asymmetry on the TMZ position and those of the interactions between the eight main astronomical tides (M2, S2, N2, K2, K1, O1, P1, and Q1) are compared. It is shown that the M2/M4-induce tidal asymmetry plays a critical role in the formulation of TMZ in the downstream of the South Branch of Yangtze estuary, while the interactions between the eight main astronomical tides have more significant effects on the TMZ location in other areas of Yangtze estuary such as the South and the North Passages.</p>


Ocean Science ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 307-321 ◽  
Author(s):  
Long Jiang ◽  
Theo Gerkema ◽  
Déborah Idier ◽  
Aimée B. A. Slangen ◽  
Karline Soetaert

Abstract. Sea-level rise (SLR) not only increases the threat of coastal flooding, but may also change tidal regimes in estuaries and coastal bays. To investigate such nearshore tidal responses to SLR, a hydrodynamic model of the European Shelf is downscaled to a model of a Dutch coastal bay (the Oosterschelde, i.e., Eastern Scheldt) and forced by SLR scenarios ranging from 0 to 2 m. This way, the effect of SLR on tidal dynamics in the adjacent North Sea is taken into account as well. The model setup does not include meteorological forcing, gravitational circulation, and changes in bottom topography. Our results indicate that SLR up to 2 m induces larger increases in tidal amplitude and stronger nonlinear tidal distortion in the bay compared to the adjacent shelf sea. Under SLR up to 2 m, the bay shifts from a mixed flood- and ebb-dominant state to complete ebb dominance. We also find that tidal asymmetry affects an important component of sediment transport. Considering sand bed-load transport only, the changed tidal asymmetry may lead to enhanced export, with potential implications for shoreline management. In this case study, we find that local impacts of SLR can be highly spatially varying and nonlinear. The model coupling approach applied here is suggested as a useful tool for establishing local SLR projections in estuaries and coastal bays elsewhere. Future studies should include how SLR changes the bed morphology as well as the feedback effect on tides.


Sign in / Sign up

Export Citation Format

Share Document