Subtropical sea surface salinity maxima in the South Indian Ocean

2019 ◽  
Vol 38 (1) ◽  
pp. 16-29
Author(s):  
Yu Wang ◽  
Yuanlong Li ◽  
Chuanjie Wei
2021 ◽  
Vol 51 (5) ◽  
pp. 1595-1609
Author(s):  
Motoki Nagura ◽  
Michael J. McPhaden

AbstractThis study examines interannual variability in sea surface height (SSH) at southern midlatitudes of the Indian Ocean (10°–35°S). Our focus is on the relative role of local wind forcing and remote forcing from the equatorial Pacific Ocean. We use satellite altimetry measurements, an atmospheric reanalysis, and a one-dimensional wave model tuned to simulate observed SSH anomalies. The model solution is decomposed into the part driven by local winds and that driven by SSH variability radiated from the western coast of Australia. Results show that variability radiated from the Australian coast is larger in amplitude than variability driven by local winds in the central and eastern parts of the south Indian Ocean at midlatitudes (between 19° and 33°S), whereas the influence from eastern boundary forcing is confined to the eastern basin at lower latitudes (10° and 17°S). The relative importance of eastern boundary forcing at midlatitudes is due to the weakness of wind stress curl anomalies in the interior of the south Indian Ocean. Our analysis further suggests that SSH variability along the west coast of Australia originates from remote wind forcing in the tropical Pacific, as is pointed out by previous studies. The zonal gradient of SSH between the western and eastern parts of the south Indian Ocean is also mostly controlled by variability radiated from the Australian coast, indicating that interannual variability in meridional geostrophic transport is driven principally by Pacific winds.


2018 ◽  
Vol 10 (12) ◽  
pp. 1930 ◽  
Author(s):  
Xu Yuan ◽  
Mhd. Salama ◽  
Zhongbo Su

The seasonal variability of sea surface salinity anomalies (SSSAs) in the Indian Ocean is investigated for its role in the South Asian Summer Monsoon. We have observed an elongated spatial-feature of the positive SSSAs in the southwestern Indian Ocean before the onset of the South Asian Summer Monsoon (SASM) by using both the Aquarius satellite and the Argo float datasets. The maximum variable areas of SSSAs in the Indian Ocean are along (60 ° E–80 ° E) and symmetrical to the equator, divided into the southern and northern parts. Further, we have found that the annual variability of SSSAs changes earlier than that of sea surface temperature anomalies (SSTAs) in the corresponding areas, due to the change of wind stress and freshwater flux. The change of barrier layer thickness (BLT) anomalies is in phase with that of SSSAs in the southwestern Indian Ocean, which helps to sustain the warming water by prohibiting upwelling. Due to the time delay of SSSAs change between the northern and southern parts, SSSAs, therefore, take part in the seasonal process of the SASM via promoting the SSTAs gradient for the cross-equator currents.


2021 ◽  
pp. 1-61
Author(s):  
Hyodae Seo ◽  
Hajoon Song ◽  
Larry W. O’Neill ◽  
Matthew R. Mazloff ◽  
Bruce D. Cornuelle

AbstractThis study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the South Indian Ocean. Comparison of two high-resolution regional coupled model simulations with/without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite lifecycle of synoptic-scale storms subjected to the high THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air-sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the South Indian Ocean.


2018 ◽  
Vol 48 (9) ◽  
pp. 2081-2101 ◽  
Author(s):  
Motoki Nagura ◽  
Shinya Kouketsu

AbstractThis study investigates an isopycnal temperature/salinity T/S, or spiciness, anomaly in the upper south Indian Ocean for the period from 2004 to 2015 using observations and reanalyses. Spiciness anomalies at about 15°S on 24–26σθ are focused on, whose standard deviation is about 0.1 psu in salinity and 0.25°C in temperature, and they have a contribution to isobaric temperature variability comparable to thermocline heave. A plausible generation region of these anomalies is the southeastern Indian Ocean, where the 25σθ surface outcrops in southern winter, and the anticyclonic subtropical gyre advects subducted water equatorward. Unlike the Pacific and Atlantic, spiciness anomalies in the upper south Indian Ocean are not T/S changes in mode water, and meridional variations in SST and sea surface salinity in their generation region are not density compensating. It is possible that this peculiarity is owing to freshwater originating from the Indonesian Seas. The production of spiciness anomalies is estimated from surface heat and freshwater fluxes and the surface T/S relationship in the outcrop region, based on several assumptions including the dominance of surface fluxes in the surface T/S budget and effective mixed layer depth proposed by Deser et al. The result agrees well with isopycnal salinity anomalies at the outcrop line, which indicates that spiciness anomalies are generated by local surface fluxes. It is suggested that the Ningaloo Niño and El Niño–Southern Oscillation lead to interannual variability in surface heat flux in the southeastern Indian Ocean and contribute to the generation of spiciness anomalies.


Sign in / Sign up

Export Citation Format

Share Document