Low-Nitrogen Stress Stimulates Lateral Root Initiation and Nitrogen Assimilation in Wheat: Roles of Phytohormone Signaling

Author(s):  
Xuemei Lv ◽  
Yunxiu Zhang ◽  
Ling Hu ◽  
Yan Zhang ◽  
Bin Zhang ◽  
...  
Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3303-3310 ◽  
Author(s):  
M.J. Laskowski ◽  
M.E. Williams ◽  
H.C. Nusbaum ◽  
I.M. Sussex

In both radish and Arabidopsis, lateral root initiation involves a series of rapid divisions in pericycle cells located on the xylem radius of the root. In Arabidopsis, the number of pericycle cells that divide to form a primordium was estimated to be about 11. To determine the stage at which primordia are able to function as root meristems, primordia of different stages were excised and cultured without added hormones. Under these conditions, primordia that consist of 2 cell layers fail to develop while primordia that consist of at least 3–5 cell layers develop as lateral roots. We hypothesize that meristem formation is a two-step process involving an initial period during which a population of rapidly dividing, approximately isodiametric cells that constitutes the primordium is formed, and a subsequent stage during which meristem organization takes place within the primordium.


2013 ◽  
Vol 25 (4) ◽  
pp. 1304-1313 ◽  
Author(s):  
Eric D. Vincill ◽  
Arielle E. Clarin ◽  
Jennifer N. Molenda ◽  
Edgar P. Spalding

2011 ◽  
Vol 191 (4) ◽  
pp. 970-983 ◽  
Author(s):  
Joseph G. Dubrovsky ◽  
Selene Napsucialy-Mendivil ◽  
Jérme Duclercq ◽  
Yan Cheng ◽  
Svetlana Shishkova ◽  
...  

Author(s):  
Marek Šírl ◽  
Tereza Šnajdrová ◽  
Dolores Gutiérrez-Alanís ◽  
Joseph G. Dubrovsky ◽  
Jean Phillipe Vielle-Calzada ◽  
...  

The AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 regulates the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from decreased initiation. Overexpression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. Formation of lateral roots is affected during the initiation of LRP and later development. AHL18 regulate root apical meristem activity, lateral root initiation and emergence, which is in accord with localization of its expression.


2006 ◽  
Vol 60 (5) ◽  
pp. 617-631 ◽  
Author(s):  
Xingming Lian ◽  
Shiping Wang ◽  
Jianwei Zhang ◽  
Qi Feng ◽  
Lida Zhang ◽  
...  

2019 ◽  
Vol 143 ◽  
pp. 1-10 ◽  
Author(s):  
Benjamin A. Babst ◽  
Fei Gao ◽  
Lucia M. Acosta-Gamboa ◽  
Abhijit Karve ◽  
Michael J. Schueller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document