Electro-osmosis-driven micro-channel flows: A comparative study of microscopic particle image velocimetry measurements and numerical simulations

2002 ◽  
Vol 33 (1) ◽  
pp. 170-180 ◽  
Author(s):  
M. Kim ◽  
A. Beskok ◽  
K. Kihm
2003 ◽  
Vol 125 (5) ◽  
pp. 895-901 ◽  
Author(s):  
Michael G. Olsen ◽  
Chris J. Bourdon

In microscopic particle image velocimetry (microPIV) experiments, the entire volume of a flowfield is illuminated, resulting in all of the particles in the field of view contributing to the image. Unlike in light-sheet PIV, where the depth of the measurement volume is simply the thickness of the laser sheet, in microPIV, the measurement volume depth is a function of the image forming optics of the microscope. In a flowfield with out-of-plane motion, the measurement volume (called the depth of correlation) is also a function of the magnitude of the out-of-plane motion within the measurement volume. Equations are presented describing the depth of correlation and its dependence on out-of-plane motion. The consequences of this dependence and suggestions for limiting its significance are also presented. Another result of the out-of-plane motion is that the height of the PIV signal peak in the correlation plane will decrease. Because the height of the noise peaks will not be affected by the out-of-plane motion, this could lead to erroneous velocity measurements. An equation is introduced that describes the effect of the out-of-plane motion on the signal peak height, and its implications are discussed. Finally, the derived analytical equations are compared to results calculated using synthetic PIV images, and the agreement between the two is seen to be excellent.


2006 ◽  
Author(s):  
Renqiang Xiong ◽  
J. N. Chung

Flow structures and pressure drops were investigated in rectangular serpentine micro-channels with miter bends which had hydraulic diameters of 0.209mm, 0.395mm and 0.549mm respectively. To evaluate the bend effect, the additional pressure drop due to the miter bend must be obtained. Three groups of micro-channels were fabricated to remove the inlet and outlet losses. A validated micro-particle image velocimetry (μPIV) system was used to achieve the flow structure in a serpentine micro-channel with hydraulic diameter of 0.173mm. The experimental results show the vortices around the outer and inner walls of the bend do not form when Re<100. Those vortices appear and continue to develop with the Re number when Re> 100-300, and the shape and size of the vortices almost remain constant when Re>1000. The bend loss coefficient Kb was observed to be related with the Re number when Re<100, with the Re number and channel size when Re>100. It almost keeps constant and changes in the range of ± 10% When Re is larger than some value in 1300-1500. And a size effect on Kb was also observed.


Sign in / Sign up

Export Citation Format

Share Document