scholarly journals Simultaneous completion and spatiotemporal grouping of corrupted motion tracks

Author(s):  
Antonio Agudo ◽  
Vincent Lepetit ◽  
Francesc Moreno-Noguer

AbstractGiven an unordered list of 2D or 3D point trajectories corrupted by noise and partial observations, in this paper we introduce a framework to simultaneously recover the incomplete motion tracks and group the points into spatially and temporally coherent clusters. This advances existing work, which only addresses partial problems and without considering a unified and unsupervised solution. We cast this problem as a matrix completion one, in which point tracks are arranged into a matrix with the missing entries set as zeros. In order to perform the double clustering, the measurement matrix is assumed to be drawn from a dual union of spatiotemporal subspaces. The bases and the dimensionality for these subspaces, the affinity matrices used to encode the temporal and spatial clusters to which each point belongs, and the non-visible tracks, are then jointly estimated via augmented Lagrange multipliers in polynomial time. A thorough evaluation on incomplete motion tracks for multiple-object typologies shows that the accuracy of the matrix we recover compares favorably to that obtained with existing low-rank matrix completion methods, specially under noisy measurements. In addition, besides recovering the incomplete tracks, the point trajectories are directly grouped into different object instances, and a number of semantically meaningful temporal primitive actions are automatically discovered.

Author(s):  
Andrew D McRae ◽  
Mark A Davenport

Abstract This paper considers the problem of estimating a low-rank matrix from the observation of all or a subset of its entries in the presence of Poisson noise. When we observe all entries, this is a problem of matrix denoising; when we observe only a subset of the entries, this is a problem of matrix completion. In both cases, we exploit an assumption that the underlying matrix is low-rank. Specifically, we analyse several estimators, including a constrained nuclear-norm minimization program, nuclear-norm regularized least squares and a non-convex constrained low-rank optimization problem. We show that for all three estimators, with high probability, we have an upper error bound (in the Frobenius norm error metric) that depends on the matrix rank, the fraction of the elements observed and the maximal row and column sums of the true matrix. We furthermore show that the above results are minimax optimal (within a universal constant) in classes of matrices with low-rank and bounded row and column sums. We also extend these results to handle the case of matrix multinomial denoising and completion.


2013 ◽  
Vol 38 (23) ◽  
pp. 5146 ◽  
Author(s):  
Shibo Gao ◽  
Yongmei Cheng ◽  
Yongqiang Zhao

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yong-Hong Duan ◽  
Rui-Ping Wen ◽  
Yun Xiao

The singular value thresholding (SVT) algorithm plays an important role in the well-known matrix reconstruction problem, and it has many applications in computer vision and recommendation systems. In this paper, an SVT with diagonal-update (D-SVT) algorithm was put forward, which allows the algorithm to make use of simple arithmetic operation and keep the computational cost of each iteration low. The low-rank matrix would be reconstructed well. The convergence of the new algorithm was discussed in detail. Finally, the numerical experiments show the effectiveness of the new algorithm for low-rank matrix completion.


Sign in / Sign up

Export Citation Format

Share Document