scholarly journals Differences in substrate use efficiency: impacts of microbial community composition, land use management, and substrate complexity

2016 ◽  
Vol 52 (4) ◽  
pp. 547-559 ◽  
Author(s):  
Tobias Bölscher ◽  
Lars Wadsö ◽  
Gunnar Börjesson ◽  
Anke M. Herrmann
2020 ◽  
Author(s):  
Elle M. Barnes ◽  
Steve Kutos ◽  
Nina Naghshineh ◽  
Marissa Mesko ◽  
Qing You ◽  
...  

0AbstractA growing focus in microbial ecology is understanding of how beneficial microbiome function is created and maintained through both stochastic and deterministic assembly mechanisms. This study explores the role of both the environment and disease in regulating the composition of microbial species pools in the soil and local communities of an amphibian host. To address this, we compared the microbiomes of over 200 Plethodon cinereus salamanders along a 65km land-use gradient in the greater New York metropolitan area and paired these with associated soil cores. Additionally, we characterized the diversity of bacterial and fungal symbionts that putatively inhibit the pathogenic fungus Batrachochytrium dendrobatidis. We predicted that if soil functions as the main regional species pool to amphibian skin, variation in skin microbial community composition would correlate with changes seen in soil. We found that salamanders share many microbial taxa with their soil environment but that these two microbiomes exhibit key differences, especially in the relative abundances of the bacteria phyla Acidobacteria, Actinobacteria, and Proteobacteria and the fungal phyla Ascomycota and genus Basidiobolus. Microbial community composition varied with changes in land-use associated factors such as canopy cover, impervious surface, and concentrations of the soil elements Al, Ni, and Hg, creating site-specific compositions. In addition, high dissimilarity among individual amphibian microbiomes across and within sites suggest that both stochastic and deterministic mechanisms guide assembly of microbes onto amphibian skin, with likely consequences in disease preventative function.


2015 ◽  
Vol 12 (8) ◽  
pp. 2585-2596 ◽  
Author(s):  
L. Ma ◽  
C. Guo ◽  
X. Lü ◽  
S. Yuan ◽  
R. Wang

Abstract. Global environmental factors impact soil microbial communities and further affect organic matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about the relative contributions of climate factors, soil properties, vegetation types, land management practices and spatial structure (which serves as a proxy for underlying effects of temperature and precipitation for spatial variation) on soil microbial community composition and biomass at large spatial scales. Here, we compared soil microbial communities using phospholipid fatty acid method across 7 land use types from 23 locations at a regional scale in northeastern China (850 × 50 km). The results showed that soil moisture and land use changes were most closely related to microbial community composition and biomass at the regional scale, while soil total C content and climate effects were weaker but still significant. Factors such as spatial structure, soil texture, nutrient availability and vegetation types were not important. Higher contributions of gram-positive bacteria were found in wetter soils, whereas higher contributions of gram-negative bacteria and fungi were observed in drier soils. The contributions of gram-negative bacteria and fungi were lower in heavily disturbed soils than historically disturbed and undisturbed soils. The lowest microbial biomass appeared in the wettest and driest soils. In conclusion, dominant climate and soil properties were not the most important drivers governing microbial community composition and biomass because of inclusion of irrigated and managed practices, and thus soil moisture and land use appear to be primary determinants of microbial community composition and biomass at the regional scale in northeastern China.


Sign in / Sign up

Export Citation Format

Share Document