regional species pool
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 24)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel K. N’Woueni ◽  
Orou G. Gaoue

AbstractThe conversion of natural systems into farms and agroecosystems is the main cause of biodiversity loss. In human-dominated landscapes, understanding the interactions between agroforestry systems and adjacent natural vegetation is fundamental to developing sustainable agricultural systems. Species can move between these two systems with natural systems providing the regional pool of species that shape the agricultural values and conservation value of the agroforestry systems. We investigated the influence of neighboring natural habitats on traditional agroforestry systems in the buffer zone of Pendjari Biosphere Reserve in Benin to understand the contribution of regional processes on the quality of agroforestry systems. We expected that agroforestry parklands adjacent to natural vegetation with high species diversity will also have higher plant species diversity. We found no similarity in plant species composition between agroforestry systems and adjacent natural habitats. A small proportion of species in adjacent natural habitats were found in agroforestry systems. The proportion of shared species was not significantly influenced by plant diversity in adjacent natural habitats or the distance from the agroforestry systems to the natural adjacent habitat. However, plant diversity in agroforestry systems was strongly associated with site ethnobotanical values indicating that farmers act as a supplemental but severe environmental filter of the regional species pool. Our study suggests that promoting the plantation of plants with high ethnobotanical use-value is a potentially viable strategy for sustainable agriculture and ecological restoration in Biosphere reserves.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 576
Author(s):  
Jordan P. Cuff ◽  
Shlomi Aharon ◽  
Igor Armiach Steinpress ◽  
Merav Seifan ◽  
Yael Lubin ◽  
...  

Caves possess a continuum of ecological zones that differ in their microhabitat conditions, resulting in a gradient of nutrients, climate, and illumination. These conditions engender relatively rapid speciation and diverse assemblages of highly specialised spider fauna. It is unclear, however, how zonation of these caves affects spider assemblage composition and structure. Surveys of 35 Levantine caves were conducted to compare the assemblages of spiders between their different ecological zones. The diverse spider assemblages of these caves differed between the entrance, twilight, and dark zones, with troglophiles and accidental species occupying the cave entrance, endemic troglobites occupying the dark zones, and hybrid assemblages existing in the twilight zones. The progression of assemblage composition and divergence throughout cave zones is suggestive of processes of ecological specialisation, speciation, and adaptation of cave-endemic troglobites in the deepest zones of caves, while cave entrance assemblages are composed of relatively common species that can also be found in epigean habitats. Moreover, the cave entrance zone assemblages in our study were similar in the different caves, while the cave dark zone assemblages were relatively distinct between caves. Cave entrance assemblages are a subset of the regional species pool filtered by the cave conditions, while dark zone assemblages are likely a result of adaptations leading to local speciation events.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alexey Udalov ◽  
Margarita Chikina ◽  
Alexandra Chava ◽  
Andrey Vedenin ◽  
Sergey Shchuka ◽  
...  

Despite a large number of studies, a detailed overall picture of benthic communities zonation in the Arctic fjords is currently lacking. Our study aimed to find out whether there is a universal model for the distribution of benthic communities based on the structural features of the fjords. We examined benthic macrofaunal communities in fjords with various environmental settings on the eastern coast of Novaya Zemlya Archipelago, Kara Sea. The material was collected during five cruises undertaken from 2013 to 2016. A total of 50 stations located in the five fjords were taken. In all five fjords, macrofauna had a similar composition assembled from a regional species pool, with a predominance of species tolerant to glacial sedimentation and fluctuations in temperature and salinity. Benthic communities changed consistently along the axis of the bay from the outer slope to the inner parts. Biodiversity and quantitative characteristics of the macrofauna decreased along the environmental gradient related to terrigenous and glacial runoff, consistent with patterns reported in other studies of Arctic glacial fjords. The most impoverished communities were dominated by bivalve Portlandia arctica and isopod Saduria sabini. At the same time, fjord walls and sills, characterized by low sedimentation rates, strong currents and the presence of ice-rafted debris, were inhabited by patchy distributed benthic communities dominated by species confined to hard substrates. In general, the distribution of communities corresponded to five zones: depleted inner periglacial areas, the upper subtidal belt with stony substrates, deep inner semi-isolated basin, outer non-isolated basins and upper slope transitioning to lower slope. Our study can provide a reference point for monitoring changes in fjord ecosystems in response to climate change and the potential impact of human activities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aniruddha Marathe ◽  
Dharma Rajan Priyadarsanan ◽  
Jagdish Krishnaswamy ◽  
Kartik Shanker

AbstractBeta diversity represents how species in the regional pool segregate among local communities and hence forms a link between local and regional species diversities. Therefore, the magnitude of beta diversity and its variation across geographic gradients can provide insights into mechanisms of community assembly. Along with limits on local or regional level diversities, effects of local abundance that lead to under-sampling of the regional species pool are important determinants of estimated beta diversity. We explore the effects of regional species pools, abundance distributions, and local abundance to show that patterns in beta diversity as well as the mean of species abundance distribution have distinct outcomes, depending on limits on species pools and under-sampling. We highlight the effect of under-sampling in some established relationships between gamma diversity and beta diversity using graphical methods. We then use empirical data on ant communities across an elevational gradient in the Eastern Himalayas to demonstrate a shift from effect of reduction in species pool to under-sampling at mid-elevations. Our results show that multiple processes with contrasting effects simultaneously affect patterns in beta diversity across geographic gradients.


2021 ◽  
Vol 13 (19) ◽  
pp. 10634
Author(s):  
Xiang Li ◽  
Wenhao Hu ◽  
Zhenrong Yu

Understanding the response of plant species richness to environmental filters is critical for conservation management as there is an increasing emphasis on plant restoration in urban/rural planning. However, empirical studies on the effects that the regional species pool has on plant species richness often overlook small spatial scales, therefore requiring more comprehensive approaches. As mountains can act as barriers to plant dispersal, the impact on the species pool, particularly, should be a priority. This study aimed to investigate how the regional species pool affects the local plant species richness in a multivariate context. We sampled vascular plant communities along three transects located in three valleys across the Chongli District, China, where four common habitat types were selected for sampling: grassland, shrubbery, pure forest, and mixed forest. We compared the differences in the multi-scale species richness and species composition between habitats and regions and used piecewise structural equation modeling to analyze the relative importance of the regional species pool, habitat species pool, soil resource availability, and exposure for local plant richness. The β-diversity had the highest contribution to the total species richness between valleys and habitats. The species composition between regions and habitats showed a significant difference and the local species richness was most strongly affected by the soil characteristics, but effects from the regional species pool still played an important role. Conservation efforts and urban/rural planning should use a multi-level and multi-scale approach based on a detailed structural investigation.


Palaios ◽  
2021 ◽  
Vol 36 (7) ◽  
pp. 247-259
Author(s):  
STEPHEN J. CULVER ◽  
SETH R. SUTTON ◽  
DAVID J. MALLINSON ◽  
MARTIN A. BUZAS ◽  
MARCI M. ROBINSON ◽  
...  

ABSTRACT The presence/absence and abundance of benthic foraminifera in successive discrete beds (Shattuck “zones”) of the Miocene Calvert and Choptank formations, exposed at the Calvert Cliffs, Maryland, USA, allows for investigation of community dynamics over space and time. The stratigraphic distribution of benthic foraminifera is documented and interpreted in the context of sea-level change, sequence stratigraphy, and the previously published distribution of mollusks. Neritic benthic foraminiferal communities of four sea-level cycles over ∼4 million years of the middle Miocene, encompassing the Miocene Climatic Optimum and the succeeding middle Miocene Climate Transition, are dominated by the same abundant species. They differ in the varying abundance of common species that occur throughout most of the studied section and in the different rare species that appear and disappear. Transgressive systems tracts (TSTs) have higher species diversity than highstand systems tracts (HSTs) but much lower density of specimens. In contrast to some previous research, all beds in the studied section are interpreted as being from the inner part of a broad, low gradient shelf and were deposited at water depths of less than ∼50 m. It is suggested that species are recruited from a regional species pool of propagules throughout the duration of TSTs. Recruitment is curtailed during highstands leading to lower diversity in the HSTs.


2021 ◽  
Vol 7 (31) ◽  
pp. eabf9557
Author(s):  
Dilli P. Rijal ◽  
Peter D. Heintzman ◽  
Youri Lammers ◽  
Nigel G. Yoccoz ◽  
Kelsey E. Lorberau ◽  
...  

The effects of climate change on species richness are debated but can be informed by the past. Here, we generated a sedimentary ancient DNA dataset covering 10 lakes and applied novel methods for data harmonization. We assessed the impact of Holocene climate changes and nutrients on terrestrial plant richness in northern Fennoscandia. We find that richness increased steeply during the rapidly warming Early Holocene. In contrast to findings from most pollen studies, we show that richness continued to increase thereafter, although the climate was stable, with richness and the regional species pool only stabilizing during the past three millennia. Furthermore, overall increases in richness were greater in catchments with higher soil nutrient availability. We suggest that richness will increase with ongoing warming, especially at localities with high nutrient availability and assuming that human activity remains low in the region, although lags of millennia may be expected.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 433
Author(s):  
Merel A. J. Hofmeijer ◽  
Bo Melander ◽  
Jukka Salonen ◽  
Anneli Lundkvist ◽  
Livija Zarina ◽  
...  

Weeds remain a challenge in organic arable farming, as well as supply ecosystem services. The aim is to control weed densities while hosting a diverse and manageable weed community, preventing domination of few deleterious species. Therefore, we want to understand how specific species are stimulated, and which traits are selected for. This study focuses on crop diversity hypothesizing that (1) regions and (2) crop diversity function as filters for specific weed species traits. We conducted a weed monitoring in spring cereals over 2 years on organic farms in five northern European regions. Management and weed trait variables collected for the occurring species allowed an RLQ fourth-corner analysis. The weed communities were regionally specific, but trait selection was not observed, except in Latvia. Hence, the regional species pool provided different species with similar traits. Crop diversity within the management of spring cereals, such as undersowing and cereal frequency in the rotation, affected weed traits. The number of years under organic production selected no traits, although species numbers are known to increase. Hence, general weed species diversity increased, irrespective of traits. We conclude that organic management may support the agility within the weed community against selection of species and act as a buffer rather than as filter.


2020 ◽  
Vol 287 (1941) ◽  
pp. 20202070
Author(s):  
L. S. Mullineaux ◽  
S. W. Mills ◽  
N. Le Bris ◽  
S. E. Beaulieu ◽  
S. M. Sievert ◽  
...  

Deep-sea hydrothermal vents are associated with seafloor tectonic and magmatic activity, and the communities living there are subject to disturbance. Eruptions can be frequent and catastrophic, raising questions about how these communities persist and maintain regional biodiversity. Prior studies of frequently disturbed vents have led to suggestions that faunal recovery can occur within 2–4 years. We use an unprecedented long-term (11-year) series of colonization data following a catastrophic 2006 seafloor eruption on the East Pacific Rise to show that faunal successional changes continue beyond a decade following the disturbance. Species composition at nine months post-eruption was conspicuously different than the pre-eruption ‘baseline' state, which had been characterized in 1998 (85 months after disturbance by the previous 1991 eruption). By 96 months post-eruption, species composition was approaching the pre-eruption state, but continued to change up through to the end of our measurements at 135 months, indicating that the ‘baseline' state was not a climax community. The strong variation observed in species composition across environmental gradients and successional stages highlights the importance of long-term, distributed sampling in order to understand the consequences of disturbance for maintenance of a diverse regional species pool. This perspective is critical for characterizing the resilience of vent species to both natural disturbance and human impacts such as deep-sea mining.


2020 ◽  
Author(s):  
Elle M. Barnes ◽  
Steve Kutos ◽  
Nina Naghshineh ◽  
Marissa Mesko ◽  
Qing You ◽  
...  

0AbstractA growing focus in microbial ecology is understanding of how beneficial microbiome function is created and maintained through both stochastic and deterministic assembly mechanisms. This study explores the role of both the environment and disease in regulating the composition of microbial species pools in the soil and local communities of an amphibian host. To address this, we compared the microbiomes of over 200 Plethodon cinereus salamanders along a 65km land-use gradient in the greater New York metropolitan area and paired these with associated soil cores. Additionally, we characterized the diversity of bacterial and fungal symbionts that putatively inhibit the pathogenic fungus Batrachochytrium dendrobatidis. We predicted that if soil functions as the main regional species pool to amphibian skin, variation in skin microbial community composition would correlate with changes seen in soil. We found that salamanders share many microbial taxa with their soil environment but that these two microbiomes exhibit key differences, especially in the relative abundances of the bacteria phyla Acidobacteria, Actinobacteria, and Proteobacteria and the fungal phyla Ascomycota and genus Basidiobolus. Microbial community composition varied with changes in land-use associated factors such as canopy cover, impervious surface, and concentrations of the soil elements Al, Ni, and Hg, creating site-specific compositions. In addition, high dissimilarity among individual amphibian microbiomes across and within sites suggest that both stochastic and deterministic mechanisms guide assembly of microbes onto amphibian skin, with likely consequences in disease preventative function.


Sign in / Sign up

Export Citation Format

Share Document