amphibian skin
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 61)

H-INDEX

45
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 883
Author(s):  
Annalisa Chianese ◽  
Carla Zannella ◽  
Alessandra Monti ◽  
Anna De Filippis ◽  
Nunzianna Doti ◽  
...  

Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1529
Author(s):  
Haixin Qin ◽  
Hantian Fang ◽  
Xiaoling Chen ◽  
Lei Wang ◽  
Chengbang Ma ◽  
...  

Amphibian skin-derived antimicrobial peptides (AMPs) have attracted increasing attention from scientists because of their excellent bioactivity and low drug resistance. In addition to being the alternative choice of antibiotics or anticancer agents, natural AMPs can also be modified as templates to optimise their bioactivities further. Here, a novel dermaseptin peptide, t-DPH1, with extensive antimicrobial activity and antiproliferative activity, was isolated from the skin secretion of Phyllomedusa hypochondrialis through ‘shotgun’ cloning. A series of cationicity-enhanced analogues of t-DPH1 were designed to further improve its bioactivities and explore the charge threshold of enhancing the bioactivity of t-DPH1. The present data suggest that improving the net charge can enhance the bioactivities to some extent. However, when the charge exceeds a specific limit, the bioactivities decrease or remain the same. When the net charge achieves the limit, improving the hydrophobicity makes no sense to enhance bioactivity. For t-DPH1, the upper limit of the net charge was +7. All the designed cationicity-enhanced analogues produced no drug resistance in the Gram-negative bacterium, Escherichia coli. These findings provide creative insights into the role of natural drug discovery in providing templates for structural modification for activity enhancement.


2021 ◽  
Author(s):  
Diego A. T. Pires ◽  
Luisa M. R. A. Tacca ◽  
Joseph E. Aslan ◽  
André M. Murad ◽  
Claudia J. Nascimento ◽  
...  
Keyword(s):  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sarah McGrath-Blaser ◽  
Morgan Steffen ◽  
T. Ulmar Grafe ◽  
María Torres-Sánchez ◽  
David S. McLeod ◽  
...  

Abstract Background The amphibian skin microbiome is an important mediator of host health and serves as a potential source of undiscovered scientifically significant compounds. However, the underlying modalities of how amphibian hosts obtain their initial skin-associated microbiome remains unclear. Here, we explore microbial transmission patterns in foam-nest breeding tree frogs from Southeast Asia (Genus: Polypedates) whose specialized breeding strategy allows for better delineation between vertically and environmentally derived microbes. To facilitate this, we analyzed samples associated with adult frog pairs taken after mating—including adults of each sex, their foam nests, environments, and tadpoles before and after environmental interaction—for the bacterial communities using DNA metabarcoding data (16S rRNA). Samples were collected from frogs in-situ in Brunei, Borneo, a previously unsampled region for amphibian-related microbial diversity. Results Adult frogs differed in skin bacterial communities among species, but tadpoles did not differ among species. Foam nests had varying bacterial community composition, most notably in the nests’ moist interior. Nest interior bacterial communities were discrete for each nest and overall displayed a narrower diversity compared to the nest exteriors. Tadpoles sampled directly from the foam nest displayed a bacterial composition less like the nest interior and more similar to that of the adults and nest exterior. After one week of pond water interaction the tadpole skin microbiome shifted towards the tadpole skin and pond water microbial communities being more tightly coupled than between tadpoles and the internal nest environment, but not to the extent that the skin microbiome mirrored the pond bacterial community. Conclusions Both vertical influence and environmental interaction play a role in shaping the tadpole cutaneous microbiome. Interestingly, the interior of the foam nest had a distinct bacterial community from the tadpoles suggesting a limited environmental effect on tadpole cutaneous bacterial selection at initial stages of life. The shift in the tadpole microbiome after environmental interaction indicates an interplay between underlying host and ecological mechanisms that drive community formation. This survey serves as a baseline for further research into the ecology of microbial transmission in aquatic animals.


2021 ◽  
Author(s):  
María Torres-Sánchez ◽  
Jennifer Villate ◽  
Sarah McGrath-Blaser ◽  
Ana V Longo

While many pathogens are limited to a single host, others can jump from host to host, which likely contributes to the emergence of infectious diseases. Despite this threat to biodiversity, traits associated with overcoming eco-evolutionary barriers to achieve host niche expansions are not well understood. Here, we examined the case of Batrachochytrium dendrobatidis (Bd), a multi-host pathogen that infects the skin of hundreds of amphibian species worldwide. To uncover functional machinery driving multi-host invasion, we analyzed Bd transcriptomic landscapes across 14 amphibian hosts and inferred the origin and evolutionary history of pathogenic genes under a phylogenetic framework comprising 12 other early-divergent zoosporic fungi. Our results not only revealed a conserved basal genetic machinery, but also highlighted the ability of Bd to display plastic infection strategies when challenged under suboptimal host environments. We found that genes related to amphibian skin exploitation have arisen mainly via gene duplications. We argue that plastic gene expression can drive variation in Bd lifecycles with different mode and tempo of development. Our findings support the idea that host skin environments exert contrasting selective pressures, such that gene expression plasticity constitutes one of the evolutionary keys leading to the success of this panzootic multi-host pathogen.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Pan Qin ◽  
Yi Meng ◽  
Ying Yang ◽  
Xinyu Gou ◽  
Naixin Liu ◽  
...  

Abstract Background Skin wound healing remains a considerable clinical challenge, thus stressing the urgent need for the development of new interventions to promote repair. Recent researches indicate that both peptides and nanoparticles may be potential therapies for the treatment of skin wounds. Methods In the current study, the mesoporous polydopamine (MPDA) nanoparticles were prepared and the peptide RL-QN15 that was previously identified from amphibian skin secretions and exhibited significant potential as a novel prohealing agent was successfully loaded onto the MPDA nanoparticles, which was confirmed by results of analysis of scanning electron microscopy and fourier transform infrared spectroscopy. The encapsulation efficiency and sustained release rate of RL-QN15 from the nanocomposites were determined. The prohealing potency of nanocomposites were evaluated by full-thickness injured wounds in both mice and swine and burn wounds in mice. Results Our results indicated that, compared with RL-QN15 alone, the prohealing potency of nanocomposites of MPDA and RL-QN15 in the full-thickness injured wounds and burn wounds in mice was increased by up to 50 times through the slow release of RL-QN15. Moreover, the load on the MPDA obviously increased the prohealing activities of RL-QN15 in full-thickness injured wounds in swine. In addition, the obvious increase in the prohealing potency of nanocomposites of MPDA and RL-QN15 was also proved by the results from histological analysis. Conclusions Based on our knowledge, this is the first research to report that the load of MPDA nanoparticles could significantly increase the prohealing potency of peptide and hence highlighted the promising potential of MPDA nanoparticles-carrying peptide RL-QN15 for skin wound therapy. Graphic abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu Wang ◽  
Elin Verbrugghe ◽  
Leander Meuris ◽  
Koen Chiers ◽  
Moira Kelly ◽  
...  

AbstractThe chytrid fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans cause the skin disease chytridiomycosis in amphibians, which is driving a substantial proportion of an entire vertebrate class to extinction. Mitigation of its impact is largely unsuccessful and requires a thorough understanding of the mechanisms underpinning the disease ecology. By identifying skin factors that mediate key events during the early interaction with B. salamandrivorans zoospores, we discovered a marker for host colonization. Amphibian skin associated beta-galactose mediated fungal chemotaxis and adhesion to the skin and initiated a virulent fungal response. Fungal colonization correlated with the skin glycosylation pattern, with cutaneous galactose content effectively predicting variation in host susceptibility to fungal colonization between amphibian species. Ontogenetic galactose patterns correlated with low level and asymptomatic infections in salamander larvae that were carried over through metamorphosis, resulting in juvenile mortality. Pronounced variation of galactose content within some, but not all species, may promote the selection for more colonization resistant host lineages, opening new avenues for disease mitigation.


2021 ◽  
Vol 8 (9) ◽  
pp. 210048
Author(s):  
Sarah Brozio ◽  
Erin M. O'Shaughnessy ◽  
Stuart Woods ◽  
Ivan Hall-Barrientos ◽  
Patricia E. Martin ◽  
...  

Foams have frequently been used as systems for the delivery of cosmetic and therapeutic molecules; however, there is high variability in the foamability and long-term stability of synthetic foams. The development of pharmaceutical foams that exhibit desirable foaming properties, delivering appropriate amounts of the active pharmaceutical ingredient (API) and that have excellent biocompatibility is of great interest. The production of stable foams is rare in the natural world; however, certain species of frogs have adopted foam production as a means of providing a protective environment for their eggs and larvae from predators and parasites, to prevent desiccation, to control gaseous exchange, to buffer temperature extremes, and to reduce UV damage. These foams show great stability (up to 10 days in tropical environments) and are highly biocompatible due to the sensitive nature of amphibian skin. This work demonstrates for the first time that nests of the túngara frog ( Engystomops pustulosus ) are stable ex situ with useful physiochemical and biocompatible properties and are capable of encapsulating a range of compounds, including antibiotics. These protein foam mixtures share some properties with pharmaceutical foams and may find utility in a range of pharmaceutical applications such as topical drug delivery systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mario Alvarado-Rybak ◽  
Manuel Lepe-Lopez ◽  
Alexandra Peñafiel-Ricaurte ◽  
Andrés Valenzuela-Sánchez ◽  
Catalina Valdivia ◽  
...  

AbstractAmphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused the greatest known loss of biodiversity due to an infectious disease. We used Bd infection data from quantitative real-time PCR (qPCR) assays of amphibian skin swabs collected across Chile during 2008–2018 to model Bd occurrence with the aim to determine bioclimatic and anthropogenic variables associated with Bd infection. Also, we used Bd presence/absence records to identify geographical Bd high-risk areas and compare Bd prevalence and infection loads between amphibian families, ecoregions, and host ecology. Data comprised 4155 Bd-specific qPCR assays from 162 locations across a latitudinal gradient of 3700 km (18º to 51ºS). Results showed a significant clustering of Bd associated with urban centres and anthropogenically highly disturbed ecosystems in central-south Chile. Both Bd prevalence and Bd infection loads were higher in aquatic than terrestrial amphibian species. Our model indicated positive associations of Bd prevalence with altitude, temperature, precipitation and human-modified landscapes. Also, we found that macroscale drivers, such as land use change and climate, shape the occurrence of Bd at the landscape level. Our study provides with new evidence that can improve the effectiveness of strategies to mitigate biodiversity loss due to amphibian chytridiomycosis.


Sign in / Sign up

Export Citation Format

Share Document