Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability

2019 ◽  
Vol 55 (2) ◽  
pp. 121-134 ◽  
Author(s):  
Zhe Wang ◽  
Qian Zhang ◽  
Christopher Staley ◽  
Hailong Gao ◽  
Satoshi Ishii ◽  
...  
2020 ◽  
Author(s):  
Rachel hasler ◽  
Mark pawlett ◽  
Jim harris ◽  
Helen bostock ◽  
Marc redmile-gordon

<p>The type of soil organic amendment selected can have profound implications for carbon cycling processes in soils. Understanding the link between this choice and its effect on the soil microbiome will improve our understanding of the capacity of these materials to improve carbon sequestration and cycling dynamics. Understanding and facilitating the lifestyle strategies of microorganisms processing organic matter is essential to improving our understanding of the terrestrial carbon cycle. This research focuses on utilising organic amendments to alter the indigenous soil microbial community composition and function to improve the capacity of the soil to cycle and store carbon in horticultural soils.  The effects of annual application of various organic fertilisers (peat, bracken, bark, horse manure, garden compost) in a long-term (10year) field experiment were explored. Sampling was completed pre and post application of organic matter within one season (following 10 years of applications) to identify which organic amendment was more effective in producing benefits to plants through improved soil organic matter and which amendments provide the greatest legacy effect on carbon cycling. The response of the soil microbial community composition (phospholipid fatty acid analysis) and carbon functional cycling dynamics (respiration using MicroResp™) were determined with a view to improving our understanding of the interaction between the materials applied and microbial processes. PCA of the MicroResp™ data identified that all treatments had a different functional profile compared to the control[PM1]  with peat being significantly different from all other treatments. Horse manure and bark differed significantly within a single growing season; prior and post organic matter addition in spring 2019.  Microbial biomass measurements for garden compost and horse manure were significantly higher following organic matter addition compared to all other treatments and the control[PM2] .  All treatments had a significant effect [PM3] on hot water extractable carbon and total carbon. Peat had a significantly different effect[PM4] , when compared to other treatments, on the soil PLFA profile and bark application significantly increased [PM5] the neutral lipid (NLFA) biomarker 16:1ω5.  Bark and horse manure application both significantly increased PLFA fungal biomarker 18:2ω6,9. No significant differences were found between the fungal/bacterial ratios of the organic matter additions prior to being added to the soil. These findings show that altering the resources available to the soil microbial community has a significant impact on soil microbial community composition and microbially mediated carbon cycling functionality. Increasing our understanding of how soil functions are altered by land management decisions will enable better informed predictions of the long-term benefits of organic matter applications on carbon sequestration and cycling dynamics.</p>


Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 408
Author(s):  
Shilin Wang ◽  
Xinyu Yan ◽  
Dong Wang ◽  
Imran Ahammad Siddique ◽  
Ji Chen ◽  
...  

Pomegranate (Punica granatum L.) is one of the most important fruit trees in semi-arid land. Previous studies were primarily focused on soil microbial community composition under different pomegranate plantation managements. However, soil microbial community composition under long-term pomegranate plantation has rarely been studied. We investigated pomegranate plantation along with an age sequence (i.e., 1, 3, 5, and 10 years after pomegranate plantation; abbreviated by P1, P3, P5, P10, respectively) in the Middle Yellow River floodplain. Our objectives were to address (1) variations of soil physicochemical properties and (2) changes in soil microbial community composition and the influential factors. The results demonstrated that the soil water content of pomegranate plantation decreased with the increase of pomegranate plantation stand age. Specifically, dissolved organic carbon, ammonium, and available phosphorus increased significantly with stand age both at 0–10- and 10–20-cm soil depths. The P10 had the highest microbial phospholipid fatty acid (PLFA) profiles, including fungi, bacteria, Gram-positive bacteria, Gram-negative bacteria, and arbuscular mycorrhizal fungi. The ratio of fungal PLFAs to bacterial PLFAs increased and the ratio of Gram-positive to Gram-negative bacterial PLFAs decreased along the pomegranate plantation stand age. Dissolved organic carbon was the most important influential factor among the studied variables, which explained 42.2% variation of soil microbial community. In summary, the long-term plantation of pomegranate elevated soil microbial biomass and altered microbial community composition.


Sign in / Sign up

Export Citation Format

Share Document