Chemical nature of soil organic carbon under different long-term fertilization regimes is coupled with changes in the bacterial community composition in a Calcaric Fluvisol

2018 ◽  
Vol 54 (8) ◽  
pp. 999-1012 ◽  
Author(s):  
Dandan Li ◽  
Lin Chen ◽  
Jisheng Xu ◽  
Lei Ma ◽  
Dan C. Olk ◽  
...  
2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Ning Wang ◽  
Jia-Lin Luo ◽  
Albert L Juhasz ◽  
Hong-Bo Li ◽  
Jian-Guang Yu

ABSTRACT Straw return is widely applied to increase soil fertility and soil organic carbon storage. However, its effect on N2O emissions from paddy soil and the associated microbial mechanisms are still unclear. In this study, wheat straw was amended to two paddy soils (2% w/w) from Taizhou (TZ) and Yixing (YX), China, which were flooded and incubated for 30 d. Real-time PCR and Illumina sequencing were used to characterize changes in denitrifying functional gene abundance and denitrifying bacterial communities. Compared to unamended controls, straw addition significantly decreased accumulated N2O emissions in both TZ (5071 to 96 mg kg–1) and YX (1501 to 112 mg kg–1). This was mainly due to reduced N2O production with decreased abundance of major genera of nirK and nirS-bacterial communities and reduced nirK and nirS gene abundances. Further analyses showed that nirK-, nirS- and nosZ-bacterial community composition shifted mainly along the easily oxidizable carbon (EOC) arrows following straw amendment among four different soil organic carbon fractions, suggesting that increased EOC was the main driver of alerted denitrifying bacterial community composition. This study revealed straw return suppressed N2O emission via altering denitrifying bacterial community compositions and highlighted the importance of EOC in controlling denitrifying bacterial communities.


2020 ◽  
Vol 36 (4) ◽  
pp. 604-615
Author(s):  
Mohammad Yaghoubi Khanghahi ◽  
Giovanna Cucci ◽  
Giovanni Lacolla ◽  
Loredana Lanzellotti ◽  
Carmine Crecchio

2005 ◽  
Vol 71 (12) ◽  
pp. 8335-8343 ◽  
Author(s):  
Karin Enwall ◽  
Laurent Philippot ◽  
Sara Hallin

ABSTRACT The objective of this study was to explore the long-term effects of different organic and inorganic fertilizers on activity and composition of the denitrifying and total bacterial communities in arable soil. Soil from the following six treatments was analyzed in an experimental field site established in 1956: cattle manure, sewage sludge, Ca(NO3)2, (NH4)2SO4, and unfertilized and unfertilized bare fallow. All plots but the fallow were planted with corn. The activity was measured in terms of potential denitrification rate and basal soil respiration. The nosZ and narG genes were used as functional markers of the denitrifying community, and the composition was analyzed using denaturing gradient gel electrophoresis of nosZ and restriction fragment length polymorphism of narG, together with cloning and sequencing. A fingerprint of the total bacterial community was assessed by ribosomal intergenic spacer region analysis (RISA). The potential denitrification rates were higher in plots treated with organic fertilizer than in those with only mineral fertilizer. The basal soil respiration rates were positively correlated to soil carbon content, and the highest rates were found in the plots with the addition of sewage sludge. Fingerprints of the nosZ and narG genes, as well as the RISA, showed significant differences in the corresponding communities in the plots treated with (NH4)2SO4 and sewage sludge, which exhibited the lowest pH. In contrast, similar patterns were observed among the other four treatments, unfertilized plots with and without crops and the plots treated with Ca(NO3)2 or with manure. This study shows that the addition of different fertilizers affects both the activity and the composition of the denitrifying communities in arable soil on a long-term basis. However, the treatments in which the denitrifying and bacterial community composition differed the most did not correspond to treatments with the most different activities, showing that potential activity was uncoupled to community composition.


2008 ◽  
Vol 35 (12) ◽  
pp. 1625-1636 ◽  
Author(s):  
Gunhild Bødtker ◽  
Tore Thorstenson ◽  
Bente-Lise P. Lillebø ◽  
Bente E. Thorbjørnsen ◽  
Rikke Helen Ulvøen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document