offshore water
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 13 (24) ◽  
pp. 14014
Author(s):  
Yi-Hung Chen ◽  
Ray-Yeng Yang

The concept of multiline anchor, whose application is mainly considered in water depths beyond 100 m and analyzed only by numerical simulation, has been discussed for half a decade, yet previous studies have not conducted the wave basin experiment. Thus, this paper set this concept firstly with a shallow water mooring system designed for a Taiwan offshore water area, where the suitable water depth for floating offshore wind turbine is located from 50 to 100 m, and then conducted a 1:144 scaled model wave basin experiment to validate the results from numerical simulation. In this paper, the numerical model simulated and analyzed three identical DeepCwind OC4 semi-submersible platforms equipped with NREL 5MW wind turbines in OrcaFlex and the experiment carried out by using three 1:144 scaled semi-submersible platforms with equivalent disks which simulated different operations of wind thrusts. To consider the possible influence of the wake effect, the minimum turbines spacing was set at 750 m in a full scaled model and the length of mooring lines was redesigned according to the catenary theory. This paper utilized OrcaWave to calculate hydrodynamic parameters and input it into OrcaFlex to simulate the line tension and the three degrees of freedom (surge, heave, and pitch) of the platforms under regular and irregular wave tests, and coordinate with scaled model tests carried out in Tainan Hydraulics Laboratory (THL). In addition to the reduction in the number of anchors, the concept of multiline anchor was also discussed in this study for the spatial configuration of offshore wind farms. It shows that the wind farm composed of three floating wind turbines can reduce the ocean space by roughly 24% compared to that with a single-line anchor. According to the comparison of numerical and experimental results, this study finally optimized the mooring lines by changing the diameter to increase the stability and the threshold of Minimum Breaking Load (MBL) and proposed a multiline anchor configuration for shallow offshore water area in Taiwan based on the results obtained.


2021 ◽  
pp. 153-172
Author(s):  
Torben Lund Skovhus ◽  
Øystein Bjaanes ◽  
Bjarte Lillebø ◽  
Jo-Inge Lilleengen

Author(s):  
Seòna R Wells ◽  
Eileen Bresnan ◽  
Kathryn Cook ◽  
Dafne Eerkes-Medrano ◽  
Margarita Machairopoulou ◽  
...  

Abstract Major changes in North Atlantic zooplankton communities in recent decades have been linked to climate change but the roles of environmental drivers are often complex. High temporal resolution data is required to disentangle the natural seasonal drivers from additional sources of variability in highly heterogeneous marine systems. Here, physical and plankton abundance data spanning 2003–2017 from a weekly long-term monitoring site on the west coast of Scotland were used to investigate the cause of an increasing decline to approximately -80± 5% in annual average total zooplankton abundance from 2011 to 2017. Generalized additive mixed models (GAMMs), with an autoregressive correlation structure, were used to examine seasonal and inter-annual trends in zooplankton abundance and their relationship with environmental variables. Substantial declines were detected across all dominant taxa, with ∼ 30–70% of the declines in abundance explained by a concurrent negative trend in salinity, alongside the seasonal cycle, with the additional significance of food availability found for some taxa. Temperature was found to drive seasonal variation but not the long-term trends in the zooplankton community. The reduction in salinity had the largest effect on several important taxa. Salinity changes could partly be explained by locally higher freshwater run-off driven by precipitation as well as potential links to changes in offshore water masses. The results highlight that changes in salinity, caused by either freshwater input (expected from climate predictions) or fresher offshore water masses, may adversely impact coastal zooplankton communities and the predators that depend on them.


Author(s):  
Peng Zhang ◽  
Lanyimin Li ◽  
Yishu Wang ◽  
Chengchun Shi ◽  
Chenchen Fan

In recent years, problems such as water quality deterioration, saltwater invasion, and low oxygen have appeared in estuaries all over the world. The Minjiang River in Fujian, as a typical tidal estuary area, is facing these thorny problems. In this paper, the effects of topography and hydrologic evolution on the water age and water quality of the lower reaches of the Minjiang River were simulated by building a hydrodynamic and water quality model. The results show that: (1) It was found that the riverbed incision of the lower reaches of the Minjiang River led to the overall decline of river water level, the increase of river volume, and the increase of downstream water age, which eventually led to the decrease of dissolved oxygen (DO) and the deterioration of water quality in the downstream from Shuikou to Baiyantan. However, the decline of topography led to the increase of tidal volume in the estuary, the enhancement of the dilution effect of oxygen-rich water bodies in the open sea, and the increase of DO in the lower reaches of Baiyantan. (2) Under no tidal action, the concentration of pollutants in the water of the North Channel increased, the DO decreased, and the DO decreased from Baiyantan to the offshore water. After the enhancement of tidal action, the dilution of oxygen-enriched water from the offshore water increased, and the DO increased. (3) The hydrological and water quality characteristics of the upper part of the lower reaches of the Minjiang River were mainly controlled by topography, runoff, and pollutant discharge, which were more affected by the tidal current transport operation and pollutant discharge near the open sea. In recent decades, the deterioration of water quality and the aggravation of saltwater intrusion in the Minjiang River were closely related to the serious topographic downcutting. The results provide a scientific basis for revealing the deterioration of estuary water quality and long-term management of the estuary.


2021 ◽  
Vol 8 ◽  
Author(s):  
Young-Gyu Park ◽  
Seongbong Seo ◽  
Dong Guk Kim ◽  
Joocheul Noh ◽  
Hyuk Min Park

At a coastal station near the southern coast of Korea, the vertical profiles of temperature salinity dissolved oxygen and velocity were obtained using a vertical profiler, Aqualog, every summer from 2016 to 2020. At the site, fishing activity was not allowed, and it was possible to maintain the profiler continuously and stably. It was set to travel every one or 2 h for two to 4 months. Thus, we were able to observe the variations of the water properties from hourly to monthly scales. The sensors were contaminated much less than we expected, and the data could be used without correction at least for our coastal applications. The main phenomena we observed are tides, coastal warming, fresh water, and responses to typhoons. On the daily time scale, the most prominent phenomenon is semi-diurnal tides, with which the thickness and temperature of coastal warm waters changed. The warm water also showed fluctuations between 10 and 15 days. The data also revealed that the tide showed strong seasonality. In summer, when the water is strongly stratified, the tidal current is baroclinic, while in winter, when the water is well mixed, the current is barotropic. Responses to typhoon induced winds were rather complicated. In one case, increase in the upper mixed layer was observed. The thick mixed layer disappeared in about a day due to advection. In another case the upper mixed layer became thinner, while the wind became stronger due the advection of the offshore water. Hydrographic observations conducted every 2 months, of course, or point measurement at a surface buoy could not show such continuous changes. More and more local fishermen are showing interest in oceanographic information, and data from the profiler could be of much use to them.


Author(s):  
Peng Wang ◽  
James C. McWilliams ◽  
Yusuke Uchiyama

AbstractCoastal fronts impact cross-shelf exchange of materials, such as plankton and nutrients, which are important to the ecosystems in continental shelves. Here using numerical simulation we demonstrate a nearshore front induced by wave streaming. Wave streaming is a bottom Eulerian current along the surface wave direction, and it is caused by the wave bottom dissipation. Wave streaming drives a Lagrangian overturning circulation in the inner shelf and pumps up deep and cold water into the overturning circulation. The water inside the overturning circulation is quickly mixed and cooled because of the wave streaming-enhanced viscosity. However, the offshore water outside the overturning circulation remains stratified and warmer. Hence, a front develops between the water inside and outside the overturning circulation. The front is unstable and generates submesoscale shelf eddies, which lead the offshore transport across the front. This study presents a new mechanism for coastal frontogenesis.


2021 ◽  
Vol 9 (3) ◽  
pp. 324
Author(s):  
Manli Zheng ◽  
Lingling Xie ◽  
Quanan Zheng ◽  
Mingming Li ◽  
Fajin Chen ◽  
...  

Using cruise observations before and after the typhoon Chebi in August 2013 and those without the typhoon in July 2012, this study investigates variations in current structure, nutrient distribution, and transports disturbed by a typhoon in a typical coastal upwelling zone east of Hainan Island in the northwestern South China Sea. The results show that along-shore northeastward flow dominates the coastal ocean with a volume transport of 0.64 × 106 m3/s in the case without the typhoon. The flow reversed southwestward, with its volume transport halved before the typhoon passage. After the typhoon passage, the flow returned back northeastward except the upper layer in waters deeper than 50 m and the total volume transport decreased to 0.10 × 106 m3/s. For the cross-shelf component, the flow kept shoreward, while transports crossing the 50 m isobath decreased from 0.25, 0.12 to 0.06 × 106 m3/s in the case without the typhoon as well as before and after typhoon passage, respectively. For the along-shore/cross-shelf nutrient transports, SiO32− has the largest value of 866.13/632.74 μmol/s per unit area, NO3− half of that, and PO43− and NO2− one order smaller in the offshore water without the typhoon. The values dramatically decreased to about one-third for SiO32−, NO3−, and PO43− after the typhoon, but changed little for NO2−. The disturbed wind field and associated Ekman flow and upwelling process may explain the variations in the current and nutrient transports after the typhoon.


2020 ◽  
Vol 12 (14) ◽  
pp. 2258 ◽  
Author(s):  
Ryan McEliece ◽  
Shawn Hinz ◽  
Jean-Marc Guarini ◽  
Jennifer Coston-Guarini

A cost-effective technology has emerged which combines multispectral sensors mounted on Unmanned Aerial Vehicles (UAVs). This technology has a promising potential for monitoring water quality in coastal environments. Our study aimed at evaluating this technology to infer the spatial distribution of chlorophyll a concentration [Chl-a] (in µg·L−1) and turbidity (FNU) in surface waters. The multispectral sensor measured reflectance at 4 distinct wavelength bands centered on 448 nm, 494 nm, 550 nm and 675 nm, hence providing 4 datasets {R(448), R(494), R(550), R(675)}. We investigated the potential of estimating [Chl-a] and turbidity based on reflectance ratios and indexes calculated from two different wavelength bands. The calibration functions were formulated based on the property that any of the reflectance measurements was linearly correlated to any other one. The calibration was performed from 35 measurements of reflectance, [Chl-a] and turbidity collected in seven sites in the U.K. between May and August 2017. Two calibration functions derived from the index δ=(R(550) − R(448))/(R(550) + R(448)) presented the best fit and explained 78% of the total variance for [Chl-a] and 74% for turbidity measurements, respectively. Calibration functions were then inversed to estimate [Chl-a] and turbidity from reflectance measurements. Finally, we performed a validation test using independent measurements from three sites in France, in July 2017. The resulting maps show a pattern with higher [Chl-a] in lower turbidity areas. However, discrepancies between the observed and re-calculated values and difficulties in validating low turbidity values suggest that site-specific calibrations should be performed at each investigated location.


2020 ◽  
Vol 61 (1) ◽  
pp. 57-66
Author(s):  
Bosiljka Mustać ◽  
Marijana Hure

The objective of this study was to determine, both quantitatively and qualitatively, the variability in the diet of the anchovy, Engraulis encrasicolus,during its spawning period. Samples were obtained from commercial purse seine catches (April 2014 – September 2016) from coastal and offshore fishing areas of different trophic states and zooplankton composition over the eastern Adriatic Sea. In general, decapod larvae comprise the main source of diet during the anchovies’ spawning period in terms of frequency and abundance, followed by calanoid copepods. The main copepod prey that was identified for anchovy along the eastern Adriatic coast was calanoid Temora stylifera, followed by Oncaeid copepods and Corycaeidae. Although no significant differences in diet composition regarding the anchovy’s size was observed, the contribution of copepods decreased in larger individuals, and were gradually substituted by large crustaceans - decapods, euphausiids, mysids and amphipods. However, a significant difference in prey composition between coastal and offshore areas was observed (global R=0.164, p<0.05). Beside adult copepods, offshore water anchovy fed mainly on decapod larvae and their megalopa stage, and amphipods. In the stomach of the fish caught in the coastal waters, higher contributions of euphausiids, mysids and fish eggs were observed. Prey diversity was greater in the stomach of specimens caught offshore (H’=0.59) than in the coastal Adriatic waters (H’=0.40).


Sign in / Sign up

Export Citation Format

Share Document