Procyanidin inhibited N2O emissions from paddy soils by affecting nitrate reductase activity and nirS- and nirK-denitrifier populations

Author(s):  
Mujun Ye ◽  
Chang Yin ◽  
Xiaoping Fan ◽  
Zixiang Gao ◽  
Hao Chen ◽  
...  
Crop Science ◽  
1966 ◽  
Vol 6 (2) ◽  
pp. 169-173 ◽  
Author(s):  
L. E. Schrader ◽  
D. M. Peterson ◽  
E. R. Leng ◽  
R. H. Hageman

Crop Science ◽  
1982 ◽  
Vol 22 (1) ◽  
pp. 85-88 ◽  
Author(s):  
E. L. Deckard ◽  
N. D. Williams ◽  
J. J. Hammond ◽  
L. R. Joppa

Author(s):  
Xudong Zhang ◽  
Bastian L. Franzisky ◽  
Lars Eigner ◽  
Christoph‐Martin Geilfus ◽  
Christian Zörb

AbstractChloride (Cl−) is required for photosynthesis and regulates osmotic balance. However, excess Cl− application negatively interacts with nitrate ($${\mathrm{NO}}_{3}^{-}$$ NO 3 - ) uptake, although its effect on $${\mathrm{NO}}_{3}^{-}$$ NO 3 - metabolism remains unclear. The aim was to test whether Cl− stress disturbs nitrate reductase activity (NRA). A maize variety (Zea mays L. cv. LG 30215) was hydroponically cultured in a greenhouse under the following conditions: control (2 mM CaCl2), moderate Cl− (10 mM CaCl2), high Cl− (60 mM CaCl2). To substantiate the effect of Cl− stress further, an osmotic stress with lower intensity was induced by 60 g polyethylene glycol (PEG) 6000 L−1 + 2 mM CaCl2), which was 57% of the osmotic pressure being produced by 60 mM CaCl2. Results show that high Cl− and PEG-induced osmotic stress significantly reduced shoot biomass, stomatal conductance and transpiration rate, but NRA was only decreased by high Cl− stress. The interference of NRA in chloride-stressed maize is supposed to be primarily caused by the antagonistic uptake of Cl− and $${\mathrm{NO}}_{3}^{-}$$ NO 3 - .


2017 ◽  
Vol 199 (6) ◽  
pp. 863-873 ◽  
Author(s):  
Silvana Gomes dos Santos ◽  
Flaviane da Silva Ribeiro ◽  
Camila Sousa da Fonseca ◽  
Willian Pereira ◽  
Leandro Azevedo Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document