Nitrate Reductase Activity of Wheat Seedlings during Exposure to and Recovery from Water Stress and Salinity

1974 ◽  
Vol 30 (3) ◽  
pp. 212-217 ◽  
Author(s):  
ZVI PLAUT
2014 ◽  
Vol 38 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Emanuelle Ferreira Melo ◽  
Christiane Noronha Fernandes-Brum ◽  
Fabrício José Pereira ◽  
Evaristo Mauro de Castro ◽  
Antonio Chalfun-Júnior

Due to the weather changes prognostic for the coming years, the understanding of water deficit and physiological responses of plants to drought becomes an important requirement in order to develop technologies such as mechanisms to assist plants to cope with longer drought periods, which will be essential to maintenance of Brazilian and worldwide production. This study aimed to evaluate ecophysiological and anatomical aspects as well as the nitrate reductase activity in Siriema coffee seedlings subjected to four treatments: Daily irrigated, non-irrigated, re-irrigated 24 hours and re-irrigated 48 hours after different stress periods. Non-irrigation promoted a reduction in leaf water potential being accented from the ninth day of evaluation onwards. Re-irrigation promoted a partial recovery of the plant water potential. Non-irrigated plants showed an increase in stomatal resistance and reduction of transpiration and nitrate reductase activity. In the roots, there was a decrease in nitrate reductase activity under water stress. Leaf anatomical modifications were significant only for the adaxial surface epidermis and palisade parenchyma thickness, this latter characteristic being higher in control plants. Stomatal density and polar and equatorial diameter ratios showed the highest values in plants under water stress. In the roots, differences only in the cortex thickness being bigger in the non-irrigated treatment could be observed. Therefore, Siriema coffee plants under water stress show physiological, biochemical and anatomical modifications that contribute to the tolerance of this genotype to these conditions.


2018 ◽  
Vol 4 (01) ◽  
pp. 105-112
Author(s):  
N. B. Singh ◽  
Nimisha Amist

In the present study we compared the effects of allelochemical with water stress (WS) on growth, biochemical parameters and responses of antioxidative enzymes in wheat seedlings. The wheat seedlings were treated with 0.5, 1.0 and 1.5 mM concentrations of cinnamic acid (CA) with and without water stress by withholding water supply for 5 days. Leaf water status, photosynthetic pigments, protein content, amount of proline and nitrate reductase (NR) and antioxidant enzymes activities were examined. CA resulted in reduction of seedling height with drastic decrease in stressed seedlings. The combined treatments CA+WS further decreased the seedling height. The same result was registered for seedlings dry weight, relative water content and pigment and protein contents. Total soluble sugar content and nitrate reductase activity were variedly affected under all treatments. Proline content and lipid peroxidation increased. Activity of superoxide dismutase increased significantly (less than 0.05) while catalase P activity was lower in all treatments. Ascorbate peroxidase and guaiacol peroxidase activities were higher as compared with catalase which showed protection of wheat seedlings from oxidative stress. Water stress elevated the toxic effect of allelochemical.


1993 ◽  
Vol 142 (5) ◽  
pp. 531-536 ◽  
Author(s):  
M. Angeles Botella ◽  
Cristina Cruz ◽  
M. Amelia Martins-Louçao ◽  
Antonio Cerdá

Author(s):  
Nimisha AAmist ◽  
N. B. Singh

In the present study we compared the effects of allelochemical with water stress (WS) on growth, biochemical parameters and responses of antioxidative enzymes in wheat seedlings. The wheat seedlings were treated with 0.5, 1.0 and 1.5 mM concentrations of cinnamic acid (CA) with and without water stress by withholding water supply for 5 days. Leaf water status, photosynthetic pigments, protein content, amount of proline and nitrate reductase (NR) and antioxidant enzymes activities were examined. CA resulted in reduction of seedling height with drastic decrease in stressed seedlings. The combined treatments CA+WS further decreased the seedling height. The same result was registered for seedlings dry weight, relative water content and pigment and protein contents. Total soluble sugar content and nitrate reductase activity were variedly affected under all treatments. Proline content and lipid peroxidation increased. Activity of superoxide dismutase increased significantly (P less than 0.05) while catalase activity was lower in all treatments. Ascorbate peroxidase and guaiacol peroxidase activities were higher as compared with catalase which showed protection of wheat seedlings from oxidative stress. Water stress elevated the toxic effect of allelochemical.


Sign in / Sign up

Export Citation Format

Share Document