Antagonism of chloride and nitrate inhibits nitrate reductase activity in chloride-stressed maize
AbstractChloride (Cl−) is required for photosynthesis and regulates osmotic balance. However, excess Cl− application negatively interacts with nitrate ($${\mathrm{NO}}_{3}^{-}$$ NO 3 - ) uptake, although its effect on $${\mathrm{NO}}_{3}^{-}$$ NO 3 - metabolism remains unclear. The aim was to test whether Cl− stress disturbs nitrate reductase activity (NRA). A maize variety (Zea mays L. cv. LG 30215) was hydroponically cultured in a greenhouse under the following conditions: control (2 mM CaCl2), moderate Cl− (10 mM CaCl2), high Cl− (60 mM CaCl2). To substantiate the effect of Cl− stress further, an osmotic stress with lower intensity was induced by 60 g polyethylene glycol (PEG) 6000 L−1 + 2 mM CaCl2), which was 57% of the osmotic pressure being produced by 60 mM CaCl2. Results show that high Cl− and PEG-induced osmotic stress significantly reduced shoot biomass, stomatal conductance and transpiration rate, but NRA was only decreased by high Cl− stress. The interference of NRA in chloride-stressed maize is supposed to be primarily caused by the antagonistic uptake of Cl− and $${\mathrm{NO}}_{3}^{-}$$ NO 3 - .