Improved ENSO forecasts by assimilating sea surface temperature observations into an intermediate coupled model

2006 ◽  
Vol 23 (4) ◽  
pp. 615-624 ◽  
Author(s):  
Fei Zheng ◽  
Jiang Zhu ◽  
Rong-Hua Zhang ◽  
Guangqing Zhou
Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 189
Author(s):  
Sittisak Injan ◽  
Angkool Wangwongchai ◽  
Usa Humphries ◽  
Amir Khan ◽  
Abdullahi Yusuf

The Ensemble Intermediate Coupled Model (EICM) is a model used for studying the El Niño-Southern Oscillation (ENSO) phenomenon in the Pacific Ocean, which is anomalies in the Sea Surface Temperature (SST) are observed. This research aims to implement Cressman to improve SST forecasts. The simulation considers two cases in this work: the control case and the Cressman initialized case. These cases are simulations using different inputs where the two inputs differ in terms of their resolution and data source. The Cressman method is used to initialize the model with an analysis product based on satellite data and in situ data such as ships, buoys, and Argo floats, with a resolution of 0.25 × 0.25 degrees. The results of this inclusion are the Cressman Initialized Ensemble Intermediate Coupled Model (CIEICM). Forecasting of the sea surface temperature anomalies was conducted using both the EICM and the CIEICM. The results show that the calculation of SST field from the CIEICM was more accurate than that from the EICM. The forecast using the CIEICM initialization with the higher-resolution satellite-based analysis at a 6-month lead time improved the root mean square deviation to 0.794 from 0.808 and the correlation coefficient to 0.630 from 0.611, compared the control model that was directly initialized with the low-resolution in-situ-based analysis.


2005 ◽  
Vol 18 (9) ◽  
pp. 1369-1380 ◽  
Author(s):  
Rong-Hua Zhang ◽  
Antonio J. Busalacchi

Abstract The role of subsurface temperature variability in modulating El Niño–Southern Oscillation (ENSO) properties is examined using an intermediate coupled model (ICM), consisting of an intermediate dynamic ocean model and a sea surface temperature (SST) anomaly model. An empirical procedure is used to parameterize the temperature of subsurface water entrained into the mixed layer (Te) from sea level (SL) anomalies via a singular value decomposition (SVD) analysis for use in simulating sea surface temperature anomalies (SSTAs). The ocean model is coupled to a statistical atmospheric model that estimates wind stress anomalies also from an SVD analysis. Using the empirical Te models constructed from two subperiods, 1963–79 (T63–79e) and 1980–96 (T80–96e), the coupled system exhibits strikingly different properties of interannual variability (the oscillation period, spatial structure, and temporal evolution). For the T63–79e model, the system features a 2-yr oscillation and westward propagation of SSTAs on the equator, while for the T80–96e model, it is characterized by a 5-yr oscillation and eastward propagation. These changes in ENSO properties are consistent with the behavior shift of El Niño observed in the late 1970s. Heat budget analyses further demonstrate a controlling role played by the vertical advection of subsurface temperature anomalies in determining the ENSO properties.


2020 ◽  
Author(s):  
Yuming Zhang ◽  
Tobias Bayr ◽  
Mojib Latif ◽  
Zhaoyang Song ◽  
Wonsun Park ◽  
...  

<p>We investigate the origin of the equatorial Pacific cold sea surface temperature (SST) bias and its link to wind biases, local and remote, in the Kiel Climate Model (KCM) with dedicated coupled and stand-alone atmosphere model experiments. In the coupled experiments, the National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP/CFSR) wind stress is prescribed over four different spatial domains: globally, over the equatorial Pacific (EP), the northern Pacific (NP) and southern Pacific (SP). The corresponding cold SST bias over the equatorial Pacific is reduced by 94%, 48%, 11% and 22%, respectively. Thus, the equatorial Pacific SST bias is mainly attributed to the wind bias over the EP region, with small but not negligible contributions from the SP and NP regions. Biases in the ocean dynamics cause the EP SST bias, while the atmospheric thermodynamics counteract it.</p><p>To examine the origin of wind biases, we force the atmospheric component of the KCM in stand-alone mode by observed SSTs and simulated SSTs from the coupled experiments with the KCM. The results show that wind biases over the EP, NP and SP regions are initially generated in the atmosphere model and further enhanced by the biased SST in the coupled model.</p><p>We conclude that the cold SST bias over the equatorial Pacific originates from biases in the ocean circulation that are forced by the biased surface winds over the EP, NP and SP regions. On the other hand, the cold equatorial Pacific SST bias amplifies the wind biases over the EP, NP and SP regions, which in turn enhances the cold SST bias by ocean-atmosphere coupling.</p>


Sign in / Sign up

Export Citation Format

Share Document