Toward Understanding the Extreme Floods over Yangtze River Valley in June–July 2020: Role of Tropical Oceans

Author(s):  
Shaolei Tang ◽  
Jing-Jia Luo ◽  
Jiaying He ◽  
Jiye Wu ◽  
Yu Zhou ◽  
...  
2012 ◽  
Vol 25 (2) ◽  
pp. 792-799 ◽  
Author(s):  
Gang Zeng ◽  
Wei-Chyung Wang ◽  
Caiming Shen

Abstract This study first used measurements to establish the association between the rainy season precipitation in the Yangtze River valley (YRV) and north China (NC) and the 850-hPa meridional wind, and then evaluated the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models’ simulations of both the associations and precipitation amount. It is shown that there exists a statistically significant positive correlation in the June–July precipitation and wind gradient over the YRV, and in the July–August precipitation and wind over NC. These associations are robust at daily, monthly, and interannual scales. Although many models are found to be capable of simulating the associations, the precipitation amount is still quite inadequate when compared with observations, thus raising the issue of the importance of lower-level wind simulations.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 368 ◽  
Author(s):  
Zhixing Xie ◽  
Bo Sun

Intensive snowfall events (ISEs) have a profound impact on the society and economy in China during winter. Considering that the interaction between northerly cold advection and southerly water vapor transport (WVT) is generally an essential condition for the occurrence of ISEs in eastern China, this study investigates the different roles of anomalous southerly WVT and northerly cold advection during the ISEs in the North China (NC) and Yangtze River valley (YRV) regions based on a composite analysis of seventy ISE cases in NC and forty ISE cases in the YRV region from 1961 to 2014. The results indicate that the ISEs in NC are mainly associated with a significant pre-conditioning of water vapor over NC induced by southerly WVT anomalies over eastern China, whereas the ISEs in the YRV region are mainly associated with a strengthened Siberian High (SH) and strong northerly cold advection invading the YRV region. These results suggest a dominant role of anomalous southerly WVT in triggering the ISEs in NC and a dominant role of northerly cold advection in triggering the ISEs in the YRV region. The different roles of anomalous southerly WVT and northerly cold advection in the ISEs over the NC and YRV regions are largely attributed to the different winter climate in the NC and YRV regions—during winter, the NC (YRV) region is dominated by cold and dry (relatively warm and moist) air flow and hence southerly WVT (northerly cold advection) is the key factor for triggering the ISEs in NC (the YRV region).


Ecosphere ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. e01967 ◽  
Author(s):  
Ming-Hong Lu ◽  
Xiao Chen ◽  
Wan-Cai Liu ◽  
Feng Zhu ◽  
Ka-Sing Lim ◽  
...  

2021 ◽  
Vol 33 (8) ◽  
pp. 101599
Author(s):  
Muhammad Ishaq Asif Rehmani ◽  
Chengqiang Ding ◽  
Ganghua Li ◽  
Syed Tahir Ata-Ul-Karim ◽  
Adel Hadifa ◽  
...  

2016 ◽  
Vol 11 (9) ◽  
pp. 094002 ◽  
Author(s):  
Chaofan Li ◽  
Adam A Scaife ◽  
Riyu Lu ◽  
Alberto Arribas ◽  
Anca Brookshaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document