Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: a diurnally forced OGCM

2007 ◽  
Vol 29 (6) ◽  
pp. 575-590 ◽  
Author(s):  
D. J. Bernie ◽  
E. Guilyardi ◽  
G. Madec ◽  
J. M. Slingo ◽  
S. J. Woolnough
2008 ◽  
Vol 31 (7-8) ◽  
pp. 909-925 ◽  
Author(s):  
D. J. Bernie ◽  
E. Guilyardi ◽  
G. Madec ◽  
J. M. Slingo ◽  
S. J. Woolnough ◽  
...  

2020 ◽  
Vol 33 (18) ◽  
pp. 7735-7753
Author(s):  
Duo Chan ◽  
Peter Huybers

AbstractDifferences in sea surface temperature (SST) biases among groups of bucket measurements in the International Comprehensive Ocean–Atmosphere Dataset, version 3.0 (ICOADS3.0), were recently identified that introduce offsets of as much as 1°C and have first-order implications for regional temperature trends. In this study, the origin of these groupwise offsets is explored through covariation between offsets and diurnal cycle amplitudes. Examination of an extended bucket model leads to expectations for offsets and amplitudes to covary in either sign, whereas misclassified engine room intake (ERI) temperatures invariably lead to negative covariance on account of ERI measurements being warmer and having a smaller diurnal amplitude. An analysis of ICOADS3.0 SST measurements that are inferred to come from buckets indicates that offsets after the 1930s primarily result from the misclassification of ERI measurements in points of five lines of evidence. 1) Prior to when ERI measurements become available in the 1930s, offset–amplitude covariance is weak and generally positive, whereas covariance is stronger and generally negative subsequently. 2) The introduction of ERI measurements in the 1930s is accompanied by a wider range of offsets and diurnal amplitudes across groups, with 3) approximately 20% of estimated diurnal amplitudes being significantly smaller than buoy and drifter observations. 4) Regressions of offsets versus amplitudes intersect independently determined end-member values of ERI measurements. 5) Offset-amplitude slopes become less negative across all regions and seasons between 1960 and 1980, when ERI temperatures were independently determined to become less warmly biased. These results highlight the importance of accurately determining measurement procedures for bias corrections and reducing uncertainty in historical SST estimates.


2020 ◽  
Author(s):  
Olivier Marti ◽  
Sébastien Nguyen ◽  
Pascale Braconnot ◽  
Florian Lemarié ◽  
Eric Blayo

<p>For historical and practical reasons, present-day coupling algorithms implemented in ocean-atmosphere models are primarily driven by the necessity to conserve energy and water at the air-sea interface. However the asynchronous coupling algorithms currently used in ocean-atmosphere do not allow for a correct phasing between the ocean and the atmosphere.</p><p>In an asynchronous coupling algorithm, the total simulation time is split into smaller time intervals (a.k.a. coupling periods) over which averaged-in-time<br>boundary data are exchanged. For a particular coupling period, the average atmospheric fluxes are computed in the atmospheric model using the oceanic surface properties computed and averaged by the oceanic model over the previous coupling period. Therefore, for a given coupling period, the fluxes used by the oceanic model are not coherent with the oceanic surface properties considered by the atmospheric model. The mathematical consistency of the solution at the interface is not guaranteed.</p><p>The use of an iterative coupling algorithm, such as Schwarz methods, is a way to correct this inconsistency and to properly reproduce the diurnal cycle when the coupling period is less than one day. In Lemarié et al. (2014), preliminary numerical experiments using the Schwarz coupling method for the simulation of a tropical cyclone with a regional coupled model were carried out. In ensemble simulations, the Schwarz iterative coupling method leads to a significantly reduced spread in the ensemble results (in terms of cyclone trajectory and intensity), thus suggesting that a source of error is removed with respect to the asynchronous coupling case.</p><p>In the present work, the Schwarz iterative method is implemented in IPSLCM6, a state-of-the-art global ocean-atmosphere coupled model used to study past, present and future climates. We analyse the convergence speed and the quality of the convergence. A partial iterative method is also tested: in a first phase, only the atmosphere physics and the vertical diffusion terms are computed, until the convergence. This provide a first guess for the full model which is then iterated until convergence of the whole system. The impact on the diurnal cycle will also be presented.</p>


2010 ◽  
Author(s):  
Ragu Murtugudde ◽  
Hyodae Seo ◽  
Markus Jochum
Keyword(s):  

2012 ◽  
Author(s):  
Arthur J. Miller ◽  
Duane Waliser
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document