ocean hydrodynamics
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Kaveh Purkiani ◽  
Benjamin Gillard ◽  
André Paul ◽  
Matthias Haeckel ◽  
Sabine Haalboom ◽  
...  

<p>Prediction of the dispersion of sediment plumes induced by potential mining activities is still very limited due to operational limitations on <em>in-situ</em> observations required for a thorough validation and calibration of numerical models. Here we report on a plume dispersion experiment carried out in the German License Area for the exploration of polymetallic nodules in the northeastern tropical Pacific Ocean. The dispersion of a sediment plume induced by a dredging experiment in April 2019 was investigated by employing a hydrodynamic high-resolution regional ocean model coupled to a sediment transport module.</p><p>Various aspects including sediment characteristics and ocean hydrodynamics are examined to obtain the best statistical agreement between observation and model results. Results show that the model is capable to reproduce suspended sediment concentration and re-deposition patterns observed in the dredging experiment. Due to a strong southward current during the experiment, the model predicts no sediment deposition and plume dispersion north of the dredging tracks. The sediment re-deposition thickness reaches up to 9 mm at the dredging tracks and 0.01 mm at far-field at a distance of about 500 m from the dredging tracks.</p><p>The model results suggest that seabed topography and variable sediment release heights above the seafloor cause significant changes especially for the low sedimentation pattern in the far-field region due to different current regimes. The termination of seawater stratification can rise sediment plume above the seafloor and spread it in a larger vertical distances up to 10 m from the seafloor.</p>


2020 ◽  
Author(s):  
Corinna Schrum ◽  
Naveed Akhtar ◽  
Nils Christiansen ◽  
Jeff Carpenter ◽  
Ute Daewel ◽  
...  

<p>The North Sea is a world-wide hot-spot in offshore wind energy production and installed capacity is rapidly increasing. Current and potential future developments raise concerns about the implications for the environment and ecosystem. Offshore wind farms change the physical environment across scales in various ways, which have the potential to modify biogeochemical fluxes and ecosystem structure. The foundations of wind farms cause oceanic wakes and sediment fluxes into the water column. Oceanic wakes have spatial scales of about O(1km) and structure local ecosystems within and in the vicinity of wind farms. Spatially larger effects can be expected from wind deficits and atmospheric boundary layer turbulence arising from wind farms. Wind disturbances extend often over muliple tenths of kilometer and are detectable as large scale wind wakes. Moreover, boundary layer disturbances have the potential to change the local weather conditions and foster e.g. local cloud development. The atmospheric changes in turn changes ocean circulation and turbulence on the same large spatial scales and modulate ocean nutrient fluxes. The latter directly influences biological productivity and food web structure. These cascading effects from atmosphere to ocean hydrodynamics, biogeochemistry and foodwebs are likely underrated while assessing potential and risks of offshore wind.</p><p>We present latest evidence for local to regional environmental impacts, with a focus on wind wakes and discuss results from observations, remote sensing and modelling.  Using a suite of coupled atmosphere, ocean hydrodynamic and biogeochemistry models, we quantify the impact of large-scale offshore wind farms in the North Sea. The local and regional meteorological effects are studied using the regional climate model COSMO-CLM and the coupled ocean hydrodynamics-ecosystem model ECOSMO is used to study the consequent effects on ocean hydrodynamics and ocean productivity. Both models operate at a horizontal resolution of 2km.</p>


2016 ◽  
Vol 52 (4) ◽  
pp. 431-442 ◽  
Author(s):  
V. B. Zalesny ◽  
V. I. Agoshkov ◽  
V. P. Shutyaev ◽  
F. Le Dimet ◽  
B. O. Ivchenko

Sign in / Sign up

Export Citation Format

Share Document